In Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality , valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound is attainedby the symmetric Fubini–Study metric, providing a natural geometrisation of quantum mechanics. Here is the stable 2-systole, which in this case can be defined as the infimum of the areas of rational 2-cycles representing the class of the complex projective line in 2-dimensional homology. The inequality first appeared in as Theorem 4.36.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageWikiLink of |
|
is dbp:knownFor of | |
is foaf:primaryTopic of |