An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In theoretical computer science, Baker's technique is a method for designing polynomial-time approximation schemes (PTASs) for problems on planar graphs. It is named after Brenda Baker, who announced it in a 1983 conference and published it in the Journal of the ACM in 1994.

Property Value
dbo:abstract
  • In theoretical computer science, Baker's technique is a method for designing polynomial-time approximation schemes (PTASs) for problems on planar graphs. It is named after Brenda Baker, who announced it in a 1983 conference and published it in the Journal of the ACM in 1994. The idea for Baker's technique is to break the graph into layers, such that the problem can be solved optimally on each layer, then combine the solutions from each layer in a reasonable way that will result in a feasible solution. This technique has given PTASs for the following problems: subgraph isomorphism, maximum independent set, minimum vertex cover, minimum dominating set, minimum edge dominating set, maximum triangle matching, and many others. The bidimensionality theory of Erik Demaine, Fedor Fomin, Hajiaghayi, and Dimitrios Thilikos and its offshoot simplifying decompositions generalizes and greatly expands the applicability of Baker's techniquefor a vast set of problems on planar graphs and more generally graphs excluding a fixed minor, such as bounded genus graphs, as well as to other classes of graphs not closed under taking minors such as the 1-planar graphs. (en)
  • Техника Бренды Бейкер — это метод построения приближенных схем полиномиального времени (ПСПВ, PTAS) для задач на планарных графах. Метод назван именем американской учёной в области информатики , сообщившей о методе на конференции 1983 года и опубликовавшей статью в журнале Journal of the ACM в 1994. Идея техники Бренды Бейкер заключается в разбиении графа на уровни, так что задача может быть решена оптимально на каждом уровне, затем решения на каждом уровне комбинируются удовлетворительным способом, что приводит к реалистичному решению. Эта техника дала ПСПВ для следующих задач: задача поиска изоморфного подграфа, задача о максимальном независимом множестве, задача о вершинном покрытии, минимальное доминирующее множество, минимальное доминирующее множество рёбер многие другие. Теория двумерности Эрика Демайна, Фёдора Фомина, Мухаммеда Хаджигайи и Димитроса Тиликоса и её ответление упрощённые декомпозиции обобщает и существенно расширяет область применения техники Бренды Бейкер на обширное множество задач на планарных графах и, более обще, на графах, не содержащих определённого минора, таких как графы с ограниченным родом, а также другие классы графов, не замкнутые по взятию минора, такие как 1-планарные графы. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 33187484 (xsd:integer)
dbo:wikiPageLength
  • 6335 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032191740 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In theoretical computer science, Baker's technique is a method for designing polynomial-time approximation schemes (PTASs) for problems on planar graphs. It is named after Brenda Baker, who announced it in a 1983 conference and published it in the Journal of the ACM in 1994. (en)
  • Техника Бренды Бейкер — это метод построения приближенных схем полиномиального времени (ПСПВ, PTAS) для задач на планарных графах. Метод назван именем американской учёной в области информатики , сообщившей о методе на конференции 1983 года и опубликовавшей статью в журнале Journal of the ACM в 1994. (ru)
rdfs:label
  • Baker's technique (en)
  • Техника Бренды Бейкер (ru)
  • Техніка Бренди Бейкер (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License