About: Anvil press

An Entity of Type: device, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

A multi-anvil press, or anvil press is a type of device related to a machine press that is used to create extraordinarily high pressures within a small volume. Anvil presses are used in materials science and geology for the synthesis and study the different phases of materials under extreme pressure, as well as for the industrial production of valuable minerals, especially synthetic diamonds, as they mimic the pressures and temperatures that exist deep in the Earth. These instruments allow the simultaneous compression and heating of millimeter size solid phase samples such as rocks, minerals, ceramics, glasses, composite materials, or metals and are capable of reaching pressures above 25 GPa (around 250,000 atmospheres) and temperatures exceeding 2,500 °C. This allows mineral physicists an

Property Value
dbo:abstract
  • A multi-anvil press, or anvil press is a type of device related to a machine press that is used to create extraordinarily high pressures within a small volume. Anvil presses are used in materials science and geology for the synthesis and study the different phases of materials under extreme pressure, as well as for the industrial production of valuable minerals, especially synthetic diamonds, as they mimic the pressures and temperatures that exist deep in the Earth. These instruments allow the simultaneous compression and heating of millimeter size solid phase samples such as rocks, minerals, ceramics, glasses, composite materials, or metals and are capable of reaching pressures above 25 GPa (around 250,000 atmospheres) and temperatures exceeding 2,500 °C. This allows mineral physicists and petrologists studying the Earth's interior to experimentally reproduce the conditions found throughout the lithosphere and upper mantle, a region that spans the near surface to a depth of 700 km. In addition to pressing on the sample, the experiment passes an electric current through a furnace within the assembly to generate temperatures up to 2,200 °C. Although Diamond anvil cells and light-gas guns can access even higher pressures, the multi-anvil apparatus can accommodate much larger samples, which simplifies sample preparation and improves the precision of measurements and the stability of the experimental parameters. The multi-anvil press is a relatively rare research tool. Lawrence Livermore National Laboratory's two presses have been used for a variety of material property studies, including diffusion and deformation of ceramics and metals, deep-focus earthquake, and the high-pressure stability of mineral phases. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4116107 (xsd:integer)
dbo:wikiPageLength
  • 14013 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1078605146 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • A multi-anvil press, or anvil press is a type of device related to a machine press that is used to create extraordinarily high pressures within a small volume. Anvil presses are used in materials science and geology for the synthesis and study the different phases of materials under extreme pressure, as well as for the industrial production of valuable minerals, especially synthetic diamonds, as they mimic the pressures and temperatures that exist deep in the Earth. These instruments allow the simultaneous compression and heating of millimeter size solid phase samples such as rocks, minerals, ceramics, glasses, composite materials, or metals and are capable of reaching pressures above 25 GPa (around 250,000 atmospheres) and temperatures exceeding 2,500 °C. This allows mineral physicists an (en)
rdfs:label
  • Anvil press (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License