An Entity of Type: PhysicalEntity100001930, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In graph theory, a haven is a certain type of function on sets of vertices in an undirected graph. If a haven exists, it can be used by an evader to win a pursuit–evasion game on the graph, by consulting the function at each step of the game to determine a safe set of vertices to move into. Havens were first introduced by as a tool for characterizing the treewidth of graphs. Their other applications include proving the existence of small separators on minor-closed families of graphs, and characterizing the ends and clique minors of infinite graphs.

Property Value
dbo:abstract
  • In graph theory, a haven is a certain type of function on sets of vertices in an undirected graph. If a haven exists, it can be used by an evader to win a pursuit–evasion game on the graph, by consulting the function at each step of the game to determine a safe set of vertices to move into. Havens were first introduced by as a tool for characterizing the treewidth of graphs. Their other applications include proving the existence of small separators on minor-closed families of graphs, and characterizing the ends and clique minors of infinite graphs. (en)
  • В теории графов укрытие — это определённый тип функции на множествах вершин неориентированного графа. Если укрытие существует, его может использовать беглец, чтобы выиграть игру преследование-уклонение на графе путём использования этой функции на каждом шаге игры для определения безопасных множеств вершин, куда можно перейти. Укрытия были впервые введены Сеймуром и Томасом как средство характеризации древесной ширины графов. Другие приложения этого понятия — доказательство существования малых сепараторов в замкнутых по минорам семействах графов и описание и миноров клик бесконечных графов. (ru)
  • В теорії графів укриття — це певний тип функції на множині вершин неорієнтованого графу. Якщо укриття існує, ним може скористатись утікач, щоб виграти гру переслідування-ухилення на графі, використовуючи цю функцію на кожному кроці гри для визначення безпечних множин вершин, куди можна перейти. Укриття вперше ввели Сеймур і Томас як засіб характеризації деревної ширини графів. Інші застосування цього поняття — доведення існування малих сепараторів у замкнутих за мінорами сімействах графів і опис країв і мінорів клік нескінченних графів. (uk)
dbo:thumbnail
dbo:wikiPageID
  • 5133456 (xsd:integer)
dbo:wikiPageLength
  • 15658 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1097308830 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In graph theory, a haven is a certain type of function on sets of vertices in an undirected graph. If a haven exists, it can be used by an evader to win a pursuit–evasion game on the graph, by consulting the function at each step of the game to determine a safe set of vertices to move into. Havens were first introduced by as a tool for characterizing the treewidth of graphs. Their other applications include proving the existence of small separators on minor-closed families of graphs, and characterizing the ends and clique minors of infinite graphs. (en)
  • В теории графов укрытие — это определённый тип функции на множествах вершин неориентированного графа. Если укрытие существует, его может использовать беглец, чтобы выиграть игру преследование-уклонение на графе путём использования этой функции на каждом шаге игры для определения безопасных множеств вершин, куда можно перейти. Укрытия были впервые введены Сеймуром и Томасом как средство характеризации древесной ширины графов. Другие приложения этого понятия — доказательство существования малых сепараторов в замкнутых по минорам семействах графов и описание и миноров клик бесконечных графов. (ru)
  • В теорії графів укриття — це певний тип функції на множині вершин неорієнтованого графу. Якщо укриття існує, ним може скористатись утікач, щоб виграти гру переслідування-ухилення на графі, використовуючи цю функцію на кожному кроці гри для визначення безпечних множин вершин, куди можна перейти. Укриття вперше ввели Сеймур і Томас як засіб характеризації деревної ширини графів. Інші застосування цього поняття — доведення існування малих сепараторів у замкнутих за мінорами сімействах графів і опис країв і мінорів клік нескінченних графів. (uk)
rdfs:label
  • Haven (graph theory) (en)
  • Укрытие (теория графов) (ru)
  • Укриття (теорія графів) (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License