An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone. The ρ-dependent term is given by Bessel functions (which occasionally are also called cylindrical harmonics).

Property Value
dbo:abstract
  • In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone. The ρ-dependent term is given by Bessel functions (which occasionally are also called cylindrical harmonics). (en)
  • En mathématiques, les harmoniques cylindriques sont un ensemble de solutions linéairement indépendantes de l'équation différentielle de Laplace exprimées en coordonnées cylindriques ρ (rayon), φ (azimut) et z (cote). Chaque fonction Vn(k) est le produit de trois termes, chacun ne dépendant que d'une coordonnée. Le terme dépendant de ρ s'exprime avec les fonctions de Bessel (qui sont parfois également appelées harmoniques cylindriques). (fr)
  • 在數學中,柱諧函數是指在柱坐標中,拉普拉斯方程, ,的一系列的解。每一個柱諧函數 都是三個函數的積: 其中 是柱坐標下的坐標(分別為半徑、極角和高度),而 n 和 k 則是兩個常數,用以區分不同的柱諧函數。所有的柱諧函數一起,組成一組正交完備的基底,任何一個拉普拉斯方程的解都可以寫成這些函數的線性組合。 有時候,柱諧函數也用來指代貝塞爾函數(柱諧函數最重要的組成部分)。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 14553158 (xsd:integer)
dbo:wikiPageLength
  • 10236 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1017316651 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone. The ρ-dependent term is given by Bessel functions (which occasionally are also called cylindrical harmonics). (en)
  • En mathématiques, les harmoniques cylindriques sont un ensemble de solutions linéairement indépendantes de l'équation différentielle de Laplace exprimées en coordonnées cylindriques ρ (rayon), φ (azimut) et z (cote). Chaque fonction Vn(k) est le produit de trois termes, chacun ne dépendant que d'une coordonnée. Le terme dépendant de ρ s'exprime avec les fonctions de Bessel (qui sont parfois également appelées harmoniques cylindriques). (fr)
  • 在數學中,柱諧函數是指在柱坐標中,拉普拉斯方程, ,的一系列的解。每一個柱諧函數 都是三個函數的積: 其中 是柱坐標下的坐標(分別為半徑、極角和高度),而 n 和 k 則是兩個常數,用以區分不同的柱諧函數。所有的柱諧函數一起,組成一組正交完備的基底,任何一個拉普拉斯方程的解都可以寫成這些函數的線性組合。 有時候,柱諧函數也用來指代貝塞爾函數(柱諧函數最重要的組成部分)。 (zh)
rdfs:label
  • Cylindrical harmonics (en)
  • Harmonique cylindrique (fr)
  • 柱諧函數 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License