About: Weil group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:VideoGame, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FWeil_group

In mathematics, a Weil group, introduced by Weil, is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W cE (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or.

AttributesValues
rdf:type
rdfs:label
  • Weil group (en)
  • ヴェイユ群 (ja)
rdfs:comment
  • In mathematics, a Weil group, introduced by Weil, is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W cE (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or. (en)
  • 数学において、ヴェイユ群(Weil group)は、 Weilで導入され、類体論で使われる絶対ガロア群の局所体や大域体での変形である。そのような体 F に対して、ヴェイユ群は一般に WF と記される。ガロア群の「有限なレベル」の変形も存在し、E/F を有限拡大としたときの E/F の相対ヴェイユ群(relative Weil group)が WE/F = WF/W cE である(この記号 c は交換子部分群による完備化を意味している。)。 ヴェイユ群について、詳しくは、 や や を参照。 (ja)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a Weil group, introduced by Weil, is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W cE (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or. (en)
  • 数学において、ヴェイユ群(Weil group)は、 Weilで導入され、類体論で使われる絶対ガロア群の局所体や大域体での変形である。そのような体 F に対して、ヴェイユ群は一般に WF と記される。ガロア群の「有限なレベル」の変形も存在し、E/F を有限拡大としたときの E/F の相対ヴェイユ群(relative Weil group)が WE/F = WF/W cE である(この記号 c は交換子部分群による完備化を意味している。)。 ヴェイユ群について、詳しくは、 や や を参照。 (ja)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is differentFrom of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 43 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software