In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P. This terminology is also used when P is just another group. That is, if G and H are groups then G is virtually H if G has a subgroup K of finite index in G such that K is isomorphic to H.
Attributes | Values |
---|
rdfs:label
| - Virtually (en)
- Virtuelle Eigenschaft (de)
- Propriété virtuelle (fr)
|
rdfs:comment
| - In der Mathematik sagt man, dass eine Gruppe eine Eigenschaft virtuell hat, wenn diese Eigenschaft auf eine Untergruppe von endlichem Index zutrifft. Man spricht beispielsweise von virtuell abelschen, virtuell nilpotenten oder virtuell zyklischen Gruppen. Ein prominentes Beispiel einer virtuellen Eigenschaft ist die 2012 von Ian Agol bewiesene , wofür er 2016 den mit 3 Millionen Dollar dotierten Breakthrough Prize in Mathematics erhielt. (de)
- En mathématiques, plus précisément en algèbre générale et dans l'étude des groupes, l'adverbe virtuellement est utilisé pour indiquer qu'une propriété est valide à indice fini près pour un groupe. Formellement, étant donné une propriété P, un groupe G est dit virtuellement P s'il existe un sous-groupe H de G tel que H a la propriété P et H est d'indice fini dans G. Par exemple, tout groupe fini est virtuellement trivial. (fr)
- In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P. This terminology is also used when P is just another group. That is, if G and H are groups then G is virtually H if G has a subgroup K of finite index in G such that K is isomorphic to H. (en)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In der Mathematik sagt man, dass eine Gruppe eine Eigenschaft virtuell hat, wenn diese Eigenschaft auf eine Untergruppe von endlichem Index zutrifft. Man spricht beispielsweise von virtuell abelschen, virtuell nilpotenten oder virtuell zyklischen Gruppen. Ein prominentes Beispiel einer virtuellen Eigenschaft ist die 2012 von Ian Agol bewiesene , wofür er 2016 den mit 3 Millionen Dollar dotierten Breakthrough Prize in Mathematics erhielt. (de)
- En mathématiques, plus précisément en algèbre générale et dans l'étude des groupes, l'adverbe virtuellement est utilisé pour indiquer qu'une propriété est valide à indice fini près pour un groupe. Formellement, étant donné une propriété P, un groupe G est dit virtuellement P s'il existe un sous-groupe H de G tel que H a la propriété P et H est d'indice fini dans G. Par exemple, tout groupe fini est virtuellement trivial. En topologie, une propriété virtuelle est une propriété valide à revêtement fini près. Un exemple célèbre d'une propriété virtuelle des variétés est la démonstration de la (en) en 2012 par Ian Agol qui lui a valu en 2016 l'attribution du Breakthrough Prize in Mathematics. (fr)
- In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup such that H has property P. Common uses for this would be when P is abelian, nilpotent, solvable or free. For example, virtually solvable groups are one of the two alternatives in the Tits alternative, while Gromov's theorem states that the finitely generated groups with polynomial growth are precisely the finitely generated virtually nilpotent groups. This terminology is also used when P is just another group. That is, if G and H are groups then G is virtually H if G has a subgroup K of finite index in G such that K is isomorphic to H. In particular, a group is virtually trivial if and only if it is finite. Two groups are virtually equal if and only if they are commensurable. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |