Unimpaired runoff, also known as full natural flow, is a hydrology term for the natural runoff of a watershed or waterbody that would have occurred under current land use but without dams or diversions. Flow readings from river gauges are influenced by upstream diversions, impoundments, and many other alternations of the land that drains into a watershed or of alternatives of a river channel itself. Engineers estimate unimpaired or natural runoff by estimating all of the effects of human "impairments" to flow and then removing these effects. Since these calculations involve many assumptions, they tend to be more accurate for either smaller watersheds or when expressed as longer period averages.
Attributes | Values |
---|
rdfs:label
| |
rdfs:comment
| - Unimpaired runoff, also known as full natural flow, is a hydrology term for the natural runoff of a watershed or waterbody that would have occurred under current land use but without dams or diversions. Flow readings from river gauges are influenced by upstream diversions, impoundments, and many other alternations of the land that drains into a watershed or of alternatives of a river channel itself. Engineers estimate unimpaired or natural runoff by estimating all of the effects of human "impairments" to flow and then removing these effects. Since these calculations involve many assumptions, they tend to be more accurate for either smaller watersheds or when expressed as longer period averages. (en)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
has abstract
| - Unimpaired runoff, also known as full natural flow, is a hydrology term for the natural runoff of a watershed or waterbody that would have occurred under current land use but without dams or diversions. Flow readings from river gauges are influenced by upstream diversions, impoundments, and many other alternations of the land that drains into a watershed or of alternatives of a river channel itself. Engineers estimate unimpaired or natural runoff by estimating all of the effects of human "impairments" to flow and then removing these effects. Since these calculations involve many assumptions, they tend to be more accurate for either smaller watersheds or when expressed as longer period averages. Unimpaired runoff is important for legal and scientific reasons. Since human development continues to alter watersheds, unimpaired runoff provides fixed frames of references for flow rates. The reason unimpaired runoff is important is because long-term hydrologic records are often used to develop relationships between precipitation, runoff, and water supply. By removing changes in the timing between precipitation and runoff due to human influences, the long-term relationships will be more useful. Calculating unimpaired runoff is also extremely important in identifying long-term climate change impacts. By subtracting the known water management influences on a long-term hydrologic record, the records may still show signs of a long-term change. These long-term signals may include long-term climate and land use change. It is still possible that the long-term climate signal is caused by larger scale anthropogenic sources. (en)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |