About: Polar topology     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPolar_topology

In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.

AttributesValues
rdfs:label
  • Topologia polare (it)
  • 極位相 (ja)
  • Polar topology (en)
rdfs:comment
  • In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing. (en)
  • 数学の関数解析学の分野における極位相(きょくいそう、英: polar topology)あるいは-収束の位相またはの集合上の一様収束位相とは、双対組のベクトル空間に対して定義されるある局所凸位相のことをいう。 (ja)
  • In matematica, in particolare in analisi funzionale, una topologia polare consente di definire una topologia localmente convessa su una coppia di spazi vettoriali duali (in generale relazionati mediante una forma bilineare). (it)
name
  • Theorem (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
left
  • true (en)
title
  • Proof (en)
has abstract
  • In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing. (en)
  • 数学の関数解析学の分野における極位相(きょくいそう、英: polar topology)あるいは-収束の位相またはの集合上の一様収束位相とは、双対組のベクトル空間に対して定義されるある局所凸位相のことをいう。 (ja)
  • In matematica, in particolare in analisi funzionale, una topologia polare consente di definire una topologia localmente convessa su una coppia di spazi vettoriali duali (in generale relazionati mediante una forma bilineare). (it)
math statement
  • Let be a pairing of vector spaces over the field and be a non-empty collection of -bounded subsets of Then, If covers then the -topology on is Hausdorff. If distinguishes points of and if is a -dense subset of then the -topology on is Hausdorff. If is a dual system then the -topology on is Hausdorff if and only if span of is dense in (en)
  • Let is a pairing of vector spaces over and let be a non-empty collection of -bounded subsets of The -topology on is not altered if is replaced by any of the following collections of [\sigma-bounded] subsets of : all subsets of all finite unions of sets in ; all scalar multiples of all sets in ; the balanced hull of every set in ; the convex hull of every set in ; the -closure of every set in ; the -closure of the convex balanced hull of every set in (en)
  • For any subset the following are equivalent: is an absorbing subset of * If this condition is not satisfied then can not possibly be a neighborhood of the origin in any TVS topology on ; is a -bounded set; said differently, is a bounded subset of ; for all where this supremum may also be denoted by The -bounded subsets of have an analogous characterization. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is rdfs:seeAlso of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 40 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software