About: Plasmonic lens     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Thing100002452, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPlasmonic_lens

In nano-optics, a plasmonic lens generally refers to a lens for surface plasmon polaritons (SPPs), i.e. a device that redirects SPPs to converge towards a single focal point. Because SPPs can have very small wavelength, they can converge into a very small and very intense spot, much smaller than the free space wavelength and the diffraction limit.

AttributesValues
rdf:type
rdfs:label
  • Plasmonic lens (en)
rdfs:comment
  • In nano-optics, a plasmonic lens generally refers to a lens for surface plasmon polaritons (SPPs), i.e. a device that redirects SPPs to converge towards a single focal point. Because SPPs can have very small wavelength, they can converge into a very small and very intense spot, much smaller than the free space wavelength and the diffraction limit. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In nano-optics, a plasmonic lens generally refers to a lens for surface plasmon polaritons (SPPs), i.e. a device that redirects SPPs to converge towards a single focal point. Because SPPs can have very small wavelength, they can converge into a very small and very intense spot, much smaller than the free space wavelength and the diffraction limit. A simple example of a plasmonic lens is a series of concentric rings on a metal film. Any light that hits the film from free space at a 90 degree angle, known as the normal, will get coupled into a SPP (this part works like a diffraction grating coupler), and that SPP will be heading towards the center of the circles, which is the focal point. Another example is a tapered "dimple". In 2007, a novel, or technologically new, plasmonic lenses and waveguide by modulating light a mesoscale dielectric structure on a metallic film with arrayed nano-slits, which have constant depth but variant widths. The slits transport electromagnetic energy in the form of SPPs in nano meter sized waveguides and provide desired phase adjustments for manipulating the beam of light. The scientists claim that it is an improvement over other subwavelength imaging techniques, such as "superlenses", where the object and image are confined to the near field. These devices have been suggested for various applications that take advantage of the small size and high intensity of the SPPs at the focal point. These include photolithography, heat-assisted magnetic recording, microscopy, biophotonics, biological molecule sensors, and solar cells, as well as other applications. The term "plasmonic lens" is also sometimes used to describe something different: Any free-space lens (i.e., a lens that focuses free-space light, rather than SPPs), that has something to do with plasmonics. These often come up in discussions of superlenses. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software