About: Nanotech metallurgy     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FNanotech_metallurgy

Nanotech metallurgy (also called nanotechnology enabled metallurgy, or nanometallurgy) is an emerging interdisciplinary domain of materials science and engineering (especially metallurgy), manufacturing, and nanoscience and engineering to study how nanophases (both ex situ and in situ) can be applied to significantly improve the processing/manufacturing, micro/nano-structures, and physical/chemical/mechanical behaviors of metals and alloys. This definition was first proposed by Xiaochun Li at the University of California, Los Angeles in 2018.

AttributesValues
rdfs:label
  • Nanotech metallurgy (en)
rdfs:comment
  • Nanotech metallurgy (also called nanotechnology enabled metallurgy, or nanometallurgy) is an emerging interdisciplinary domain of materials science and engineering (especially metallurgy), manufacturing, and nanoscience and engineering to study how nanophases (both ex situ and in situ) can be applied to significantly improve the processing/manufacturing, micro/nano-structures, and physical/chemical/mechanical behaviors of metals and alloys. This definition was first proposed by Xiaochun Li at the University of California, Los Angeles in 2018. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Uniform_dispersion_of_SiC_nanoparticles_in_as-solidified_Mg.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Nanotech metallurgy (also called nanotechnology enabled metallurgy, or nanometallurgy) is an emerging interdisciplinary domain of materials science and engineering (especially metallurgy), manufacturing, and nanoscience and engineering to study how nanophases (both ex situ and in situ) can be applied to significantly improve the processing/manufacturing, micro/nano-structures, and physical/chemical/mechanical behaviors of metals and alloys. This definition was first proposed by Xiaochun Li at the University of California, Los Angeles in 2018. High performance metals and alloys offer potential to improve energy efficiency and system performance. While conventional metallurgical methods have reached certain limits, nanotech metallurgy has the potential to break the traditional barriers in the metals processing and manufacturing technologies. It has a wider scientific and technological reach beyond the concept of metal matrix nanocomposites (MMNCs), as the study of MMNCs normally focuses on how nanoparticles (generally of high volume fractions) are used to tune material properties only. With the development of more scalable methods of nanophase synthesis, incorporation, and dispersion for mass manufacturing, the metals and alloys produced by nanotech metallurgy are becoming more and more economical. Recently the discovery of a nanoparticle self-dispersion and stabilization mechanism in molten metals gives a scientific and technical foundation for scalable manufacturing in nanotech metallurgy. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 36 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software