About: Law of total cumulance     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLaw_of_total_cumulance

In probability theory and mathematical statistics, the law of total cumulance is a generalization to cumulants of the law of total probability, the law of total expectation, and the law of total variance. It has applications in the analysis of time series. It was introduced by David Brillinger. It is most transparent when stated in its most general form, for joint cumulants, rather than for cumulants of a specified order for just one random variable. In general, we have where

AttributesValues
rdf:type
rdfs:label
  • Law of total cumulance (en)
rdfs:comment
  • In probability theory and mathematical statistics, the law of total cumulance is a generalization to cumulants of the law of total probability, the law of total expectation, and the law of total variance. It has applications in the analysis of time series. It was introduced by David Brillinger. It is most transparent when stated in its most general form, for joint cumulants, rather than for cumulants of a specified order for just one random variable. In general, we have where (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In probability theory and mathematical statistics, the law of total cumulance is a generalization to cumulants of the law of total probability, the law of total expectation, and the law of total variance. It has applications in the analysis of time series. It was introduced by David Brillinger. It is most transparent when stated in its most general form, for joint cumulants, rather than for cumulants of a specified order for just one random variable. In general, we have where * κ(X1, ..., Xn) is the joint cumulant of n random variables X1, ..., Xn, and * the sum is over all partitions of the set { 1, ..., n } of indices, and * "B ∈ π;" means B runs through the whole list of "blocks" of the partition π, and * κ(Xi : i ∈ B | Y) is a conditional cumulant given the value of the random variable Y. It is therefore a random variable in its own right—a function of the random variable Y. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 39 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software