About: Kolmogorov equations (continuous-time Markov chains)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FKolmogorov_equations_%28continuous-time_Markov_chains%29

In mathematics and statistics, in the context of Markov processes, the Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, are a pair of systems of differential equations that describe the time evolution of the process's distribution. This article, as opposed to the article titled Kolmogorov equations, focuses on the scenario where we have a continuous-time Markov chain (so the state space is countable). In this case, we can treat the Kolmogorov equations as a way to describe the probability , where (the state space) and are the final and initial times, respectively.

AttributesValues
rdfs:label
  • Kolmogorov equations (continuous-time Markov chains) (en)
rdfs:comment
  • In mathematics and statistics, in the context of Markov processes, the Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, are a pair of systems of differential equations that describe the time evolution of the process's distribution. This article, as opposed to the article titled Kolmogorov equations, focuses on the scenario where we have a continuous-time Markov chain (so the state space is countable). In this case, we can treat the Kolmogorov equations as a way to describe the probability , where (the state space) and are the final and initial times, respectively. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics and statistics, in the context of Markov processes, the Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, are a pair of systems of differential equations that describe the time evolution of the process's distribution. This article, as opposed to the article titled Kolmogorov equations, focuses on the scenario where we have a continuous-time Markov chain (so the state space is countable). In this case, we can treat the Kolmogorov equations as a way to describe the probability , where (the state space) and are the final and initial times, respectively. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 36 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software