About: Kato's conjecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDifferentialOperators, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FKato%27s_conjecture

Kato's conjecture is a mathematical problem named after mathematician Tosio Kato, of the University of California, Berkeley. Kato initially posed the problem in 1953. Kato asked whether the square roots of certain elliptic operators, defined via functional calculus, are analytic. The full statement of the conjecture as given by Auscher et al. is: "the domain of the square root of a uniformly complex elliptic operator with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ".

AttributesValues
rdf:type
rdfs:label
  • Kato's conjecture (en)
  • 加藤予想 (ja)
rdfs:comment
  • 加藤予想(かとうよそう、英: Kato's conjecture)は、楕円型作用素の平方根が解析的かを問う数学上の問題である。名称は提案者である数学者の加藤敏夫に因む。加藤予想は1953年に加藤によって提案された。Pascal Auscher、スティーヴ・ホーフマン、マイケル・レイシー、アラン・マッキントッシュとPhilippe Tchamitchianによって2001年に共同で解決されるまで、問題はほぼ半世紀の間未解決のままだった。 (ja)
  • Kato's conjecture is a mathematical problem named after mathematician Tosio Kato, of the University of California, Berkeley. Kato initially posed the problem in 1953. Kato asked whether the square roots of certain elliptic operators, defined via functional calculus, are analytic. The full statement of the conjecture as given by Auscher et al. is: "the domain of the square root of a uniformly complex elliptic operator with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ". (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Kato's conjecture is a mathematical problem named after mathematician Tosio Kato, of the University of California, Berkeley. Kato initially posed the problem in 1953. Kato asked whether the square roots of certain elliptic operators, defined via functional calculus, are analytic. The full statement of the conjecture as given by Auscher et al. is: "the domain of the square root of a uniformly complex elliptic operator with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ". The problem remained unresolved for nearly a half-century, until in 2001 it was jointly solved in the affirmative by Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and . (en)
  • 加藤予想(かとうよそう、英: Kato's conjecture)は、楕円型作用素の平方根が解析的かを問う数学上の問題である。名称は提案者である数学者の加藤敏夫に因む。加藤予想は1953年に加藤によって提案された。Pascal Auscher、スティーヴ・ホーフマン、マイケル・レイシー、アラン・マッキントッシュとPhilippe Tchamitchianによって2001年に共同で解決されるまで、問題はほぼ半世紀の間未解決のままだった。 (ja)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 39 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software