About: Interval scheduling     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Rule105846932, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInterval_scheduling

Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource). For instance, task A might run from 2:00 to 5:00, task B might run from 4:00 to 10:00 and task C might run from 9:00 to 11:00. A subset of intervals is compatible if no two intervals overlap on the machine/resource. For example, the subset {A,C} is compatible, as is the subset {B}; but neither {A,B} nor {B,C} are compatible subsets, because the corresponding intervals within each subset overlap.

AttributesValues
rdf:type
rdfs:label
  • Interval scheduling (en)
rdfs:comment
  • Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource). For instance, task A might run from 2:00 to 5:00, task B might run from 4:00 to 10:00 and task C might run from 9:00 to 11:00. A subset of intervals is compatible if no two intervals overlap on the machine/resource. For example, the subset {A,C} is compatible, as is the subset {B}; but neither {A,B} nor {B,C} are compatible subsets, because the corresponding intervals within each subset overlap. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource). For instance, task A might run from 2:00 to 5:00, task B might run from 4:00 to 10:00 and task C might run from 9:00 to 11:00. A subset of intervals is compatible if no two intervals overlap on the machine/resource. For example, the subset {A,C} is compatible, as is the subset {B}; but neither {A,B} nor {B,C} are compatible subsets, because the corresponding intervals within each subset overlap. The interval scheduling maximization problem (ISMP) is to find a largest compatible set, i.e., a set of non-overlapping intervals of maximum size. The goal here is to execute as many tasks as possible, that is, to maximize the throughput. It is equivalent to finding a maximum independent set in an interval graph. A generalization of the problem considers machines/resources. Here the goal is to find compatible subsets whose union is the largest. In an upgraded version of the problem, the intervals are partitioned into groups. A subset of intervals is compatible if no two intervals overlap, and moreover, no two intervals belong to the same group (i.e., the subset contains at most a single representative of each group). Each group of intervals corresponds to a single task, and represents several alternative intervals in which it can be executed. The group interval scheduling decision problem (GISDP) is to decide whether there exists a compatible set in which all groups are represented. The goal here is to execute a single representative task from each group. GISDPk is a restricted version of GISDP in which the number of intervals in each group is at most k. The group interval scheduling maximization problem (GISMP) is to find a largest compatible set - a set of non-overlapping representatives of maximum size. The goal here is to execute a representative task from as many groups as possible. GISMPk is a restricted version of GISMP in which the number of intervals in each group is at most k. This problem is often called JISPk, where J stands for Job. GISMP is the most general problem; the other two problems can be seen as special cases of it: * ISMP is the special case in which each task belongs to its own group (i.e. it is equal to GISMP1). * GISDP is the problem of deciding whether the maximum exactly equals the number of groups. All these problems can be generalized by adding a weight for each interval, representing the profit from executing the task in that interval. Then, the goal is to maximize the total weight. All these problems are special cases of single-machine scheduling, since they assume that all tasks must run on a single processor. Single-machine scheduling is a special case of optimal job scheduling. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 44 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software