About: Hypercone     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatQuadrics, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHypercone

In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity.

AttributesValues
rdf:type
rdfs:label
  • Hypercone (en)
  • Гиперконус (ru)
rdfs:comment
  • In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity. (en)
  • Гиперконус (англ. Hypercone) — четырёхмерная фигура, образованная следующим образом. В четырёхмерной системе координат ставим точку А. Затем рисуем шар с центром в точке В, так чтобы прямая АВ была перпендикулярна шару. Из каждой точки шара проводим отрезок в точку A. Из полученных отрезков вырождается фигура — гиперконус. А — его вершина, В — его основание. Его гиперобъем: (ru)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Spherical_cone_lines.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity. (en)
  • Гиперконус (англ. Hypercone) — четырёхмерная фигура, образованная следующим образом. В четырёхмерной системе координат ставим точку А. Затем рисуем шар с центром в точке В, так чтобы прямая АВ была перпендикулярна шару. Из каждой точки шара проводим отрезок в точку A. Из полученных отрезков вырождается фигура — гиперконус. А — его вершина, В — его основание. Его гиперобъем: (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 45 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software