About: Graph isomorphism problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:State100024720, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGraph_isomorphism_problem

Unsolved problem in computer science: Can the graph isomorphism problem be solved in polynomial time? (more unsolved problems in computer science) The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. This problem is a special case of the subgraph isomorphism problem, which asks whether a given graph G contains a subgraph that is isomorphic to another given graph H; this problem is known to be NP-complete. It is also known to be a special case of the non-abelian hidden subgroup problem over the symmetric group.

AttributesValues
rdf:type
rdfs:label
  • Graphen-Isomorphismusproblem (de)
  • Problema del isomorfismo de grafos (es)
  • Graph isomorphism problem (en)
  • Problème de l'isomorphisme de graphes (fr)
  • Задача изоморфности графов (ru)
  • Problema de isomorfismo de grafos (pt)
rdfs:comment
  • Unsolved problem in computer science: Can the graph isomorphism problem be solved in polynomial time? (more unsolved problems in computer science) The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. This problem is a special case of the subgraph isomorphism problem, which asks whether a given graph G contains a subgraph that is isomorphic to another given graph H; this problem is known to be NP-complete. It is also known to be a special case of the non-abelian hidden subgroup problem over the symmetric group. (en)
  • El problema del isomorfismo gráfico es el problema computacional para determinar si dos gráficos finitos son isomórficos. No se sabe que el problema se pueda resolver en tiempo polinomial ni que sea NP-completo y, por lo tanto, puede estar en la clase de complejidad computacional NP-intermedia. Se sabe que el problema de isomorfismo gráfico está en la'jerarquía baja de la clase NP, lo que implica que no es NP completo a menos que la jerarquía de tiempo polinomial colapse a su segundo nivel. Al mismo tiempo, el isomorfismo para muchas clases especiales de gráficos se puede resolver en tiempo polinomial, y en la práctica el isomorfismo gráfico a menudo se puede resolver de manera eficiente. (es)
  • En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphes non orientés, à décider s'ils sont isomorphes ou pas, c'est-à-dire s'ils sont les mêmes, quitte à renommer les sommets. En pratique, l'isomorphisme de graphes est utilisé en chimie pour classer les molécules. (fr)
  • O problema de isomorfismo de grafos é um problema computacional para determinar se dois grafos finitos são isomórficos. Não é conhecido se o problema pode ser solucionável em tempo polinomial nem se é NP-completo e, portanto, pode estar na classe de complexidade computacional NP-Intermediário. Sabe-se que o problema do isomorfismo do grafo está na baixa hierarquia da classe NP, o que implica que não é NP-completo a menos que a hierarquia de tempo polinomial colapse para o segundo nível.Ao mesmo tempo, o isomorfismo para muitas classes especiais de grafos pode ser resolvido em tempo polinomial, e na prática o isomorfismo do grafo pode ser resolvido de forma eficiente. (pt)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software