About: Faithfully flat descent     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFaithfully_flat_descent

Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover. In practice, from an affine point of view, this technique allows one to prove some statement about a ring or scheme after faithfully flat base change. "Vanilla" faithfully flat descent is generally false; instead, faithfully flat descent is valid under some finiteness conditions (e.g., quasi-compact or locally of finite presentation).

AttributesValues
rdfs:label
  • Faithfully flat descent (en)
rdfs:comment
  • Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover. In practice, from an affine point of view, this technique allows one to prove some statement about a ring or scheme after faithfully flat base change. "Vanilla" faithfully flat descent is generally false; instead, faithfully flat descent is valid under some finiteness conditions (e.g., quasi-compact or locally of finite presentation). (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover. In practice, from an affine point of view, this technique allows one to prove some statement about a ring or scheme after faithfully flat base change. "Vanilla" faithfully flat descent is generally false; instead, faithfully flat descent is valid under some finiteness conditions (e.g., quasi-compact or locally of finite presentation). A faithfully flat descent is a special case of Beck's monadicity theorem. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 45 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software