In mathematics, specifically category theory, an essential monomorphism is a monomorphism f in a category C such that for a morphism g in C, the morphism is a monomorphism only when g is a monomorphism. Essential monomorphisms in a category of modules are those whose image is an essential submodule of the codomain. An injective hull of an object X is an essential monomorphism from X to an injective object.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |