About: Equality (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Person, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FEquality_%28mathematics%29

In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B. The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct. For example:

AttributesValues
rdf:type
rdfs:label
  • تساوي (رياضيات) (ar)
  • Igualtat (matemàtiques) (ca)
  • Rovnost (matematika) (cs)
  • Gleichheit (Mathematik) (de)
  • Ισότητα (μαθηματικά) (el)
  • Egaleco (matematiko) (eo)
  • Berdintza (eu)
  • Igualdad matemática (es)
  • Equality (mathematics) (en)
  • Égalité (mathématiques) (fr)
  • Kesamaan (in)
  • Uguaglianza (matematica) (it)
  • 등식 (ko)
  • 等式 (ja)
  • Gelijkheid (wiskunde) (nl)
  • Równość (matematyka) (pl)
  • Igualdade matemática (pt)
  • Равенство (математика) (ru)
  • Відношення рівності (uk)
  • 相等 (zh)
rdfs:comment
  • En matemàtiques, s'anomena igualtat a una expressió que indica l'equivalència entre dues entitats. Les igualtats s'indiquen amb el símbol =, de manera que donades dues entitats x i y, x=y només si x i y són iguals. Formalment el concepte d'igualtat té definicions que poden diferir segons la base axiomàtica de partida. Usualment es defineix la igualtat en un conjunt C com aquella relació d'equivalència ~ tal que el conjunt quocient C/~ coincideix amb C. En la Teoria de conjunts de Zermelo-Fraenkel, la igualtat es defineix a partir de l'axioma d'extensionalitat. (ca)
  • Rovnost v matematice je relace neboli vztah, vyjadřující totožnost objektů, které jsou v tomto vztahu. Každý objekt je roven jen sám sobě. Žádné dva různé objekty si nemohou být rovny. (cs)
  • المساواة هي المبدأ العام للتعبير عن تعادل كميتين أو تعبيرين رياضيين. علاقة التساوي هي أبسط نموذج لعلاقات أكثر عموما تسمى علاقات تكافىء. هذه العلاقات تتميز بكونها انعكاسية وتناظرية ومتعدية. (ar)
  • Egaleco estas ekzemplo de la pli ĝenerala koncepto de ekvivalentrilato sur aro. Ekvacio estas simple aserto ke du esprimoj estas rilatantaj per egaleco. Tamen la simbolo "=" estas iam uzata por la aliaj rilatoj. Ekzemple, la frazo S(x)=O(x3) signifas ke S(x) kreskas je la samo ordo kiel x3, kaj iuj propraĵoj de egaleco ĉi tie ne veras.Ĉi tio estas nerigora notacio, vidu pli detale en granda O. (eo)
  • Matematikan, berdintzak bi adierazpen matematikok balio bera izatea adierazten du. Berdintza adierazteko = ikurra erabiltzen da. Formalki, berdintza (edo berdintasun erlazioa) X multzo batean honela definitutako erlazio bitarra da: . (eu)
  • En matemáticas, un enunciado en el que dos expresiones (iguales o distintas) denotan el mismo objeto matemático se llama igualdad matemática. Dos objetos matemáticos son considerados iguales si los objetos poseen el mismo valor. Por ejemplo, la frase «la suma de dos y dos» y la expresión «cuatro» se refieren al mismo objeto matemático, un cierto número natural. La expresión «es igual a» o «es lo mismo que» se suele representar en matemáticas con el signo =. Así, el ejemplo anterior suele escribirse como: (es)
  • En mathématiques, l’égalité est une relation binaire entre objets signifiant que ces objets sont identiques, c’est-à-dire que le remplacement de l’un par l’autre dans une expression ne change jamais la valeur de cette dernière. Une égalité est une proposition pouvant s’écrire à l’aide du signe égal « = », séparant deux expressions mathématiques de même nature (nombres, vecteurs, fonctions, ensembles…) ; la négation de cette proposition s’écrit à l’aide du symbole « ≠ ». (fr)
  • Dalam matematika, kesamaan adalah hubungan antara dua kuantitas, atau ekspresi matematika secara umum, yang menyatakan bahwa kedua kuantitas tersebut punya nilai yang sama, atau kedua ekspresi tersebut melambangkan yang sama. Kesamaan antara A dan B ditulis dengan A = B, dan dibaca A sama dengan B. Simbol "=" disebut "tanda sama dengan". (in)
  • 等式(とうしき、英: equality)とは、二つの対象の等価性・相等関係を表す数式のことである。 (ja)
  • In matematica l'uguaglianza indica comunemente una relazione binaria di equivalenza fra due enti, detti membri dell'uguaglianza. Rappresenta uno dei concetti più importanti e fondamentali introdotti a livello della logica di una teoria. (it)
  • 수학에서 같음(영어: equality) 또는 상등(相等)은 둘 또는 그 이상의 식이 동일한 수학적 대상임을 나타내는 관계이다. 대상을 등호 '='로 연결해 그들의 같음을 표현하는 관계식을 등식(문화어: 같기식; 영어: equality)이라고 한다. 등식 a = b에서, 등호를 기준으로 왼쪽에 있는 변을 좌변(左邊, 영어: left-hand side), 오른쪽에 있는 변을 우변(右邊, 영어: right-hand side), 함께 양변(兩邊)이라고 부른다. 대수적으로, 등식은 들이 같은 값을 취한다는 의미이다. 변수가 등장하는 등식은 방정식이라고 한다. 방정식은 각각의 변수가 취한 값에 따라 성립 여부가 결정되며, 언제 성립하는지에 따라 항등식(항상 성립), 부정(여러 경우에 성립), (항상 불성립) 등으로 나뉜다. 때로 많은 수학 체계를 구성하는 데 쓰이는 집합론에서, 두 집합의 같음은 속하는 원소가 완전히 같다는 의미이다. 수리논리학에서는 두 대상의 같음을 대략 '성질'이 완전히 같다는 의미의 이항 관계로 추상화한다. 1차 논리에서는 함수와 1차 논리식에 대입했을 때 같은 효과가 나게 하는 동치관계로 묘사한다. (ko)
  • Dois objetos matemáticos são iguais se e somente se são precisamente o mesmo em todo caminho. Isto define uma relação binária, igualdade, denotada pelo sinal de igualdade "=" em tal modo que a sentença "x = y" significa que x e y são iguais. Equivalência, em sentido mais geral, é provido pela construção de uma relação de equivalência entre dois conjuntos. Uma sentença que duas expressões denotam quantidades iguais é uma equação. (pt)
  • Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности. (ru)
  • 在數學的領域中,若兩個数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“”;当且仅当和相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如,即與是相等的。 注意,有些时候“”并不表示等式。例如,表示在数量级上渐进。因為这裡的符号“”不滿足若且唯若的定義,所以它不等於等于符号;实际上,是没有意义的。请参见大O符号了解这部分内容。 集合上的等于关系是种二元关系,满足,对称性,反对称性和传递性。实际上,这是 上唯一满足所有这些性质的关系。去掉对反对称性的要求,就是等价关系。相应的,给定任意等价关系,可以构造商集,并且这个等价关系将‘下降为’上的等于。 在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程式。 (zh)
  • Рівність (відношення рівності) в математиці — бінарне відношення, найбільш логічно сильний випадок відношення еквівалентності. (uk)
  • Ισότητα ονομάζεται ένα οποιοδήποτε ζεύγος που συνδέονται με τον τελεστή =, δηλαδή αν Α είναι η μία παράσταση και Β η άλλη τότε η έκφραση Α=Β είναι μια ισότητα. Το νόημα της ισότητας είναι ότι αν υπολογιστεί η τιμή της μιας παράστασης και η τιμή της άλλης, τότε οι δύο τιμές είναι ίδιες. Υπάρχουν δύο είδη ισότητας: * Η ταυτότητα που δηλώνει ότι η ισότητα ισχύει υπό οποιεσδήποτε συνθήκες. * Η εξίσωση που δηλώνει ότι η ισότητα ισχύει μόνο υπό συγκεκριμένες συνθήκες. (el)
  • Gleichheit, in Formeln als Gleichheitszeichen „“ geschrieben, bedeutet in der Mathematik vollständige Übereinstimmung. Ein mathematisches Objekt ist nur sich selbst gleich. Es kann natürlich verschiedene Bezeichnungen und Beschreibungen für dasselbe Objekt geben, etwa verschiedene arithmetische Ausdrücke für dieselbe Zahl, verschiedene Definitionen derselben geometrischen Figur oder verschiedene Aufgabenstellungen, die dieselbe eindeutige Lösung haben. Verwendet man die mathematische Formelsprache, heißen solche „Bezeichnungen und Beschreibungen“ Terme. Welches Objekt mit einem Term gemeint ist, ist vom Zusammenhang abhängig, in dem der Term „interpretiert“ wird; dementsprechend ist eine Aussage über die Gleichheit oder Ungleichheit zweier Terme ebenfalls vom Zusammenhang abhängig. Woraus (de)
  • In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B. The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct. For example: (en)
  • Równość – relacja, która jest relacją równoważności. Jest to zatem relacja zwrotna, przechodnia i symetryczna. Ważną cechą relacji równości jest to, że dla dowolnej funkcji zachodzi: Aksjomatyzacja pojęcia równości generuje bardzo dużo aksjomatów – potrzebne są trzy aksjomaty: zwrotności, przechodniości i symetrii, oraz przede wszystkim aksjomat dla każdej pozycji każdej relacji i funkcji w algebrze. Na przykład jeśli system zawiera i to dodanie do niego równości wymaga dodania następujących aksjomatów: (pl)
  • Gelijkheid, of meer formeel de gelijkheidssrelatie of identiteitsrelatie, is de tweeplaatsige relatie op een verzameling , die wordt gedefinieerd door . De identiteitsrelatie is het eenvoudigste voorbeeld van een equivalentierelatie op een verzameling, dat wil zeggen die binaire relaties die zowel reflexief, symmetrisch als transitief zijn. De gelijkheidsrelatie is ook antisymmetrisch. Deze vier eigenschappen bepalen op unieke wijze de gelijkheidsrelatie op elke verzameling en maken gelijkheid de enige relatie op , die tegelijkertijd een equivalentierelatie en een partiële orde is. Hieruit volgt dat gelijkheid in die zin de kleinste equivalentierelatie op enige verzameling is, dat het een deelverzameling van enig andere equivalentierelatie op is. (nl)
rdfs:seeAlso
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 45 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software