About: Corestriction     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCorestriction

In mathematics, a corestriction of a function is a notion analogous to the notion of a restriction of a function. The duality prefix co- here denotes that while the restriction changes the domain to a subset, the corestriction changes the codomain to a subset. However, the notions are not categorically dual. Given any subset we can consider the corresponding inclusion of sets as a function. Then for any function , the restriction of a function onto can be defined as the composition .

AttributesValues
rdfs:label
  • Corestriction (en)
rdfs:comment
  • In mathematics, a corestriction of a function is a notion analogous to the notion of a restriction of a function. The duality prefix co- here denotes that while the restriction changes the domain to a subset, the corestriction changes the codomain to a subset. However, the notions are not categorically dual. Given any subset we can consider the corresponding inclusion of sets as a function. Then for any function , the restriction of a function onto can be defined as the composition . (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a corestriction of a function is a notion analogous to the notion of a restriction of a function. The duality prefix co- here denotes that while the restriction changes the domain to a subset, the corestriction changes the codomain to a subset. However, the notions are not categorically dual. Given any subset we can consider the corresponding inclusion of sets as a function. Then for any function , the restriction of a function onto can be defined as the composition . Analogously, for an inclusion the corestriction of onto is the uniquefunction such that there is a decomposition . The corestriction exists if and only if contains the image of . In particular, the corestriction onto the image always exists and it is sometimes simply called the corestriction of . More generally, one can consider corestriction of a morphism in general categories with images. The term is well known in category theory, while rarely used in print. Andreotti introduces the above notion under the name coastriction, while the name corestriction reserves to the notion categorically dual to the notion of a restriction. Namely, if is a surjection of sets (that is a quotient map) then Andreotti considers the composition , which surely always exists. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 40 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software