Chow's lemma, named after Wei-Liang Chow, is one of the foundational results in algebraic geometry. It roughly says that a proper morphism is fairly close to being a projective morphism. More precisely, a version of it states the following: If is a scheme that is proper over a noetherian base , then there exists a projective -scheme and a surjective -morphism that induces an isomorphism for some dense open
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is foaf:primaryTopic of |