An (simple) arc in finite projective geometry is a set of points which satisfies, in an intuitive way, a feature of curved figures in continuous geometries. Loosely speaking, they are sets of points that are far from "line-like" in a plane or far from "plane-like" in a three-dimensional space. In this finite setting it is typical to include the number of points in the set in the name, so these simple arcs are called k-arcs. An important generalization of the k-arc concept, also referred to as arcs in the literature, are the (k, d)-arcs.
Attributes | Values |
---|
rdfs:label
| - Arc (projective geometry) (en)
- 弧 (射影幾何学) (ja)
|
rdfs:comment
| - An (simple) arc in finite projective geometry is a set of points which satisfies, in an intuitive way, a feature of curved figures in continuous geometries. Loosely speaking, they are sets of points that are far from "line-like" in a plane or far from "plane-like" in a three-dimensional space. In this finite setting it is typical to include the number of points in the set in the name, so these simple arcs are called k-arcs. An important generalization of the k-arc concept, also referred to as arcs in the literature, are the (k, d)-arcs. (en)
- 有限射影幾何学における弧(こ、英: arc) とは d 次元の有限射影空間上の、どのような d + 1 個の点も決して同一超平面( 1、つまり d − 1 次元の部分空間)上にない点の集合である。 d + 1 をさらに小さくすることはできない。d 次元空間において、どのような d 個の点をとってきても、そのうちの d − 1 個の点が同一の d − 2 次元の部分空間に属さない限り、それらの d 個の点を通る d − 1 次元超平面が一意に定まる。 (ja)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
author
| |
id
| |
title
| |
has abstract
| - An (simple) arc in finite projective geometry is a set of points which satisfies, in an intuitive way, a feature of curved figures in continuous geometries. Loosely speaking, they are sets of points that are far from "line-like" in a plane or far from "plane-like" in a three-dimensional space. In this finite setting it is typical to include the number of points in the set in the name, so these simple arcs are called k-arcs. An important generalization of the k-arc concept, also referred to as arcs in the literature, are the (k, d)-arcs. (en)
- 有限射影幾何学における弧(こ、英: arc) とは d 次元の有限射影空間上の、どのような d + 1 個の点も決して同一超平面( 1、つまり d − 1 次元の部分空間)上にない点の集合である。 d + 1 をさらに小さくすることはできない。d 次元空間において、どのような d 個の点をとってきても、そのうちの d − 1 個の点が同一の d − 2 次元の部分空間に属さない限り、それらの d 個の点を通る d − 1 次元超平面が一意に定まる。 (ja)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage disambiguates
of | |
is foaf:primaryTopic
of | |