This HTML5 document contains 23 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n12http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
Subject Item
dbr:Polar_circle_(geometry)
rdfs:label
Polar circle (geometry) Полярная окружность
rdfs:comment
In geometry, the polar circle of a triangle is the circle whose center is the triangle's orthocenter and whose squared radius is where A, B, C denote both the triangle's vertices and the angle measures at those vertices, H is the orthocenter (the intersection of the triangle's altitudes), D, E, F are the feet of the altitudes from vertices A, B, C respectively, R is the triangle's circumradius (the radius of its circumscribed circle), and a, b, c are the lengths of the triangle's sides opposite vertices A, B, C respectively. Полярная окружность треугольника — это окружность, центр которой совпадает с ортоцентром треугольника, а радиус равен где A, B, C означают как вершины, так и соответствующие углы, а точка H — ортоцентр (пересечение высот). Точки D, E и F являются основаниями высот, опущенных из вершин A, B и C соответственно, R является радиусом описанной окружности, а a, b и c — длинами сторон треугольника, противоположных вершинам A, B и C соответственно.
foaf:depiction
n12:Polar_circle.svg
foaf:isPrimaryTopicOf
wikipedia-en:Polar_circle_(geometry)
dbo:thumbnail
n12:Polar_circle.svg?width=300
dct:subject
dbc:Triangle_geometry
dbo:wikiPageID
45079434
dbo:wikiPageRevisionID
944227161
owl:sameAs
dbpedia-ru:Полярная_окружность wikidata:Q19598677 freebase:m.012ngf5p n15:1seMt
dbp:wikiPageUsesTemplate
dbt:Rp dbt:MathWorld dbt:Reflist
dbp:title
Polar Circle
dbp:urlname
PolarCircle
dbo:abstract
In geometry, the polar circle of a triangle is the circle whose center is the triangle's orthocenter and whose squared radius is where A, B, C denote both the triangle's vertices and the angle measures at those vertices, H is the orthocenter (the intersection of the triangle's altitudes), D, E, F are the feet of the altitudes from vertices A, B, C respectively, R is the triangle's circumradius (the radius of its circumscribed circle), and a, b, c are the lengths of the triangle's sides opposite vertices A, B, C respectively. The first parts of the radius formula reflect the fact that the orthocenter divides the altitudes into segment pairs of equal products. The trigonometric formula for the radius shows that the polar circle has a real existence only if the triangle is obtuse, so one of its angles is obtuse and hence has a negative cosine. Полярная окружность треугольника — это окружность, центр которой совпадает с ортоцентром треугольника, а радиус равен где A, B, C означают как вершины, так и соответствующие углы, а точка H — ортоцентр (пересечение высот). Точки D, E и F являются основаниями высот, опущенных из вершин A, B и C соответственно, R является радиусом описанной окружности, а a, b и c — длинами сторон треугольника, противоположных вершинам A, B и C соответственно. Первая часть формулы отражает факт, что ортоцентр делит высоты на отрезки, произведения которых равны. Тригонометрическая часть формулы показывает, что полярный круг существует только в случае, когда треугольник является тупоугольным, так что один из косинусов отрицателен.
prov:wasDerivedFrom
wikipedia-en:Polar_circle_(geometry)?oldid=944227161&ns=0
dbo:wikiPageLength
2242