This HTML5 document contains 114 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
n21https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Peter–Weyl_theorem
rdf:type
yago:Statement106722453 yago:Abstraction100002137 yago:WikicatTopologicalGroups yago:Message106598915 yago:WikicatTheoremsInRepresentationTheory yago:WikicatTheoremsInGroupTheory yago:WikicatTheoremsInHarmonicAnalysis yago:WikicatTheoremsInAnalysis yago:Proposition106750804 yago:Theorem106752293 yago:Group100031264 yago:WikicatMathematicalTheorems yago:Communication100033020
rdfs:label
Teorema de Peter-Weyl Peter–Weyl theorem Teorema di Peter-Weyl Teorema de Peter-Weyl 페터-바일 정리 Satz von Peter-Weyl 彼得-魏尔定理
rdfs:comment
彼得-魏尔定理(英語:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群的所有有限维不可约的,在上所有复值连续群函数构成、配备了的空间中稠密。第二部分指出,在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言,的所有有限维不可约酉表示的矩阵元构成了上平方可积的复值函数空间的一组标准正交基。 Im mathematischen Teilgebiet der harmonischen Analyse verallgemeinert der Satz von Peter-Weyl, benannt nach Hermann Weyl und seinem Studenten Fritz Peter (1899–1949), die Fourierreihe für Funktionen auf beliebigen kompakten topologischen Gruppen. In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur. Il teorema di Peter-Weyl è un risultato della teoria delle rappresentazioni che fornisce informazioni utili al calcolo delle rappresentazioni irriducibili di gruppi finiti (informazioni sul numero delle rappresentazioni irriducibili non equivalenti e sulla loro dimensione). Esso può anche essere usato per decomporre le rappresentazioni riducibili. L'uso di questo teorema per i gruppi finiti viene ulteriormente semplificato introducendo la nozione di carattere, e ne esiste inoltre una generalizzazione per rappresentazioni di gruppi infiniti come ad esempio i gruppi di Lie. El Teorema de Peter-Weyl es un resultado básico en la teoría del análisis armónico, aplicado a grupos topológicos que son compactos, pero no necesariamente . Hermann Weyl, junto con su estudiante Peter, lo probó en la configuración de un grupo compacto de Lie, G. El teorema generaliza los hechos significantes sobre la descomposición de la representación regular de un grupo finito, como fue descubierto por F.G. Frobenius e Issai Schur.
dcterms:subject
dbc:Theorems_in_group_theory dbc:Topological_groups dbc:Unitary_representation_theory dbc:Theorems_in_representation_theory dbc:Theorems_in_harmonic_analysis
dbo:wikiPageID
294474
dbo:wikiPageRevisionID
1106662564
dbo:wikiPageWikiLink
dbr:Profinite_group dbr:Linear_functional dbr:Strong_operator_topology dbr:Stone–Weierstrass_theorem dbr:Limit_(category_theory) dbr:Abelian_group dbr:Dense_set dbr:American_Journal_of__Mathematics dbr:Orthonormal_basis dbc:Theorems_in_group_theory dbr:Closure_(topology) dbr:Matrix_group dbr:Topological_group dbr:Hausdorff_space dbr:Weyl_character_formula dbr:Ferdinand_Georg_Frobenius dbc:Unitary_representation_theory dbr:Maximal_torus dbr:Unitary_representation dbr:Haar_measure dbr:Special_unitary_group dbc:Topological_groups dbc:Theorems_in_representation_theory dbr:Regular_representation dbr:Homogeneous_polynomials dbr:Complex-valued_function dbr:Irreducible_representation dbr:Continuous_function dbr:Harmonic_analysis dbr:Character_(mathematics) dbr:Square-integrable_function dbr:Category_theory dbr:Unitary_operator dbr:Matrix_coefficient dbr:Pontryagin_duality dbr:Fritz_Peter dbc:Theorems_in_harmonic_analysis dbr:Lie_group dbr:Élie_Cartan dbr:Mathematics dbr:Uniform_norm dbr:Lp_space dbr:Finite_group dbr:Annals_of_Mathematics dbr:Compact_group dbr:Endomorphism dbr:Circle_group dbr:Direct_sum_of_representations dbr:Issai_Schur dbr:Continuous_functions_on_a_compact_Hausdorff_space dbr:Group_homomorphisms dbr:Hermann_Weyl dbr:Group_action_(mathematics) dbr:Closed_subgroup_theorem dbr:Spherical_harmonics dbr:Group_representation
owl:sameAs
dbpedia-ko:페터-바일_정리 dbpedia-zh:彼得-魏尔定理 dbpedia-es:Teorema_de_Peter-Weyl dbpedia-pt:Teorema_de_Peter-Weyl wikidata:Q1529941 dbpedia-it:Teorema_di_Peter-Weyl freebase:m.01r0vy n21:XgaA dbpedia-de:Satz_von_Peter-Weyl
dbp:wikiPageUsesTemplate
dbt:Clarify dbt:Short_description dbt:Harvnb dbt:Harv dbt:Citation dbt:Springer
dbp:id
p/p072440
dbp:title
Peter-Weyl theorem
dbo:abstract
Il teorema di Peter-Weyl è un risultato della teoria delle rappresentazioni che fornisce informazioni utili al calcolo delle rappresentazioni irriducibili di gruppi finiti (informazioni sul numero delle rappresentazioni irriducibili non equivalenti e sulla loro dimensione). Esso può anche essere usato per decomporre le rappresentazioni riducibili. In particolare afferma che le rappresentazioni irriducibili non equivalenti di un gruppo di ordine sono in numero finito uguale al numero delle classi di coniugio in cui il gruppo è suddiviso, e sono tali che l'insieme dei vettori di componenti al variare di che si ottengono al variare di da a e al variare di e da a (dimensione di ), formano una base ortonormale in . L'uso di questo teorema per i gruppi finiti viene ulteriormente semplificato introducendo la nozione di carattere, e ne esiste inoltre una generalizzazione per rappresentazioni di gruppi infiniti come ad esempio i gruppi di Lie. 彼得-魏尔定理(英語:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群的所有有限维不可约的,在上所有复值连续群函数构成、配备了的空间中稠密。第二部分指出,在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言,的所有有限维不可约酉表示的矩阵元构成了上平方可积的复值函数空间的一组标准正交基。 Im mathematischen Teilgebiet der harmonischen Analyse verallgemeinert der Satz von Peter-Weyl, benannt nach Hermann Weyl und seinem Studenten Fritz Peter (1899–1949), die Fourierreihe für Funktionen auf beliebigen kompakten topologischen Gruppen. In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur. Let G be a compact group. The theorem has three parts. The first part states that the matrix coefficients of irreducible representations of G are dense in the space C(G) of continuous complex-valued functions on G, and thus also in the space L2(G) of square-integrable functions. The second part asserts the complete reducibility of unitary representations of G. The third part then asserts that the regular representation of G on L2(G) decomposes as the direct sum of all irreducible unitary representations. Moreover, the matrix coefficients of the irreducible unitary representations form an orthonormal basis of L2(G). In the case that G is the group of unit complex numbers, this last result is simply a standard result from Fourier series. El Teorema de Peter-Weyl es un resultado básico en la teoría del análisis armónico, aplicado a grupos topológicos que son compactos, pero no necesariamente . Hermann Weyl, junto con su estudiante Peter, lo probó en la configuración de un grupo compacto de Lie, G. El teorema generaliza los hechos significantes sobre la descomposición de la representación regular de un grupo finito, como fue descubierto por F.G. Frobenius e Issai Schur. Para establecer el Teorema, primero es necesaria la idea del Espacio de Hilbert sobre , ; esto es razonable puesto que la medida de Haar existe en . Llamando este espacio , el grupo tiene una representación unitaria en actuando por la derecha o por la izquierda. Esto implica una representación de vía Esta representación se descompone en la suma de por cada representación finita irreducible de G donde es la representación dual. Esto significa que hay una descripción de suma directa de con la indicación de todas las clases (hasta el isomorfismo) de representaciones unitarias irreducibles de . Esto implica inmediatamente la estructura de para las representaciones diestra o zurda de , que es la suma directa de cada ; tantas veces como su dimensión (siempre finita).
gold:hypernym
dbr:Result
prov:wasDerivedFrom
wikipedia-en:Peter–Weyl_theorem?oldid=1106662564&ns=0
dbo:wikiPageLength
16359
foaf:isPrimaryTopicOf
wikipedia-en:Peter–Weyl_theorem