This HTML5 document contains 167 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbthttp://dbpedia.org/resource/Template:
dbpedia-nohttp://no.dbpedia.org/resource/
dbpedia-svhttp://sv.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-bghttp://bg.dbpedia.org/resource/
dbpedia-fihttp://fi.dbpedia.org/resource/
dbrhttp://dbpedia.org/resource/
dbpedia-hrhttp://hr.dbpedia.org/resource/
dbpedia-arhttp://ar.dbpedia.org/resource/
dbpedia-ethttp://et.dbpedia.org/resource/
dbpedia-hehttp://he.dbpedia.org/resource/
n51http://commons.wikimedia.org/wiki/Special:FilePath/
dbpedia-frhttp://fr.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-cshttp://cs.dbpedia.org/resource/
dbpedia-kkhttp://kk.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n25http://dbpedia.org/resource/File:
dbphttp://dbpedia.org/property/
n59http://people.revoledu.com/kardi/tutorial/LinearAlgebra/
dbpedia-eohttp://eo.dbpedia.org/resource/
n52http://ur.dbpedia.org/resource/
n41http://tg.dbpedia.org/resource/
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-ukhttp://uk.dbpedia.org/resource/
dbpedia-idhttp://id.dbpedia.org/resource/
dbohttp://dbpedia.org/ontology/
dbpedia-vihttp://vi.dbpedia.org/resource/
n55http://mathworld.wolfram.com/
dbpedia-pthttp://pt.dbpedia.org/resource/
dbpedia-huhttp://hu.dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/
dbpedia-ishttp://is.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-dehttp://de.dbpedia.org/resource/
n27https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/linear_independence/v/
dbpedia-ruhttp://ru.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
n57http://ta.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
dbpedia-nlhttp://nl.dbpedia.org/resource/
n42https://global.dbpedia.org/id/
yago-reshttp://yago-knowledge.org/resource/
dbpedia-slhttp://sl.dbpedia.org/resource/
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-cahttp://ca.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
n26http://bs.dbpedia.org/resource/
dbpedia-simplehttp://simple.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-glhttp://gl.dbpedia.org/resource/
dbpedia-trhttp://tr.dbpedia.org/resource/
dbpedia-fahttp://fa.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
dbpedia-eshttp://es.dbpedia.org/resource/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Linear_independence
rdf:type
yago:Abstraction100002137 yago:WikicatVectorSpaces owl:Thing yago:Attribute100024264 yago:Space100028651
rdfs:label
Kebebasan linear Лінійно незалежні вектори Lineare Unabhängigkeit Indépendance linéaire Linear independence 일차 독립 집합 Independència lineal Linjärt oberoende Lineaire onafhankelijkheid 線性無關 استقلال خطي Линейная независимость Lineara sendependeco Lineární nezávislost 線型独立 Indipendenza lineare Dependencia e independencia lineal Liniowa niezależność Independência linear
rdfs:comment
In matematica, e più precisamente in algebra lineare, l'indipendenza lineare di un insieme di vettori appartenenti ad uno spazio vettoriale si verifica se nessuno di questi può essere espresso come una combinazione lineare degli altri. In caso contrario si dice che l'insieme di vettori è linearmente dipendente. 線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立であるとは、それらのベクトルが張る空間が n 次元部分線形空間になることである。 線型独立であるベクトルたちは、何れも、零ベクトルでない。 具体的には、n 本のベクトル v1, …, vn が線型独立であるとは、 をスカラーとして、 が成り立つことである()。 線型独立でないことを線型従属(一次従属)という。 Em álgebra linear, um conjunto de vectores diz-se linearmente independente se nenhum dos seus elementos for combinação linear dos outros. In the theory of vector spaces, a set of vectors is said to be linearly dependent if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be linearly independent. These concepts are central to the definition of dimension. في الجبر الخطي، تدعى مجموعة من المتجهات مجموعة مستقلّة خطيًا إذا كان من المستحيل كتابة أيّ من المتجهات في المجموعة كتركيبة خطية من عدد نهائي من المتجهات الأخرى في المجموعة. إذا لم يتحقّق ذلك، تسمّى هذه المجموعة مجموعة تابعة خطيًا. لنأخذ على سبيل المثال أربعة متّجهات في الفضاء الشعاعي الحقيقي ثلاثي الأبعاد، : في هذا المثال، فإنّ المتجهات الثلاثة الأولى هي مستقلّة خطيًا، في حين مجموعة المتجهات الأربعة هي تابعة خطيًا (غير مستقلة). السبب يعود إلى إمكانيّة تكوين المتجه كالتالي: En algèbre linéaire, étant donnée une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée. Ústředním konceptem lineární algebry je pojem lineární nezávislosti potažmo lineární závislosti vektorů z daného vektorového prostoru. Pomocí tohoto pojmu se definují další velmi důležité objekty lineární algebry, jako je například báze vektorového prostoru.Máme-li soubor několika vektorů, pak lineární závislost je matematicky zachycená intuitivní představa o tom, že lze jeden vektor vyjádřit pomocí ostatních, pokud jsou si tyto vektory dostatečně podobné. Pokud jsou tyto vektory příliš rozdílné, pak nedokážeme sčítáním či prodlužováním vyjádřit jeden vektor pomocí zbylých. Takové vektory jsou lineárně nezávislé. 在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線性無關或線性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。 Binnen een vectorruimte over een lichaam (Ned) / veld (Be) wordt een stelsel vectoren aangeduid als lineair onafhankelijk of vrij, als geen van deze vectoren een lineaire combinatie is van de andere vectoren. Dalam aljabar linear, sekelompok vektor disebut bebas linear apabila masing-masingnya tidak dapat ditulis sebagai kombinasi linear dari vektor-vektor yang lain. Sekelompok vektor yang tidak memenuhi syarat ini dinamakan bergantung linier. Sebagai contoh, dalam sebuah ruang vektor riil tiga dimensi kita bisa mengambil tiga vektor berikut: Liniowa niezależność – własność algebraiczna rodziny wektorów danej przestrzeni liniowej polegająca na tym, że żaden z nich nie może być przedstawiony jako kombinacja liniowa skończenie wielu innych wektorów ze zbioru. Rodzinę wektorów, która nie jest liniowo niezależna, nazywa się liniowo zależną. Лінійно незалежні вектори (лінійна незалежність множини векторів) — множина векторів, які не утворюють тривіальних лінійних комбінацій рівних нулю. В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым. In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden. Äquivalent dazu ist (sofern die Familie nicht nur aus dem Nullvektor besteht), dass sich keiner der Vektoren als Linearkombination der anderen Vektoren der Familie darstellen lässt. En lineara algebro, familio de vektoroj el vektora spaco estas lineare sendependa, se neniu el ili povas esti skribata kiel lineara kombinaĵo de finie multaj aliaj vektoroj. Ekzemple, en la tri-dimensia Eŭklida spaco R3, la tri vektoroj (1, 0, 0), (0, 1, 0) kaj (0, 0, 1) estas lineare sendependaj, dum (2, −1, 1), (1, 0, 1) kaj (3, −1, 2) ne estas tiaj. (La tria vektoro estas la sumo de la unuaj du.) Vektoroj, kiuj ne estas lineare sendependaj, nomiĝas lineare dependaj. En álgebra lineal, un conjunto de vectores es linealmente independiente si ninguno de ellos puede ser escrito con una combinación lineal de los restantes. Por ejemplo, en R3, el conjunto de vectores (1, 0, 0), (0, 1, 0) y (0, 0, 1) es linealmente independiente, mientras que (2, −1, 1), (1, 0, 1) y (3, −1, 2) no lo es, ya que el tercero es la suma de los dos primeros. En àlgebra lineal, un conjunt de vectors és linealment independent (l.i.) si cap d'ells es pot escriure com a combinació lineal dels altres. Un exemple en R3 de conjunt vectors linealment independents és: (1,0,0) (0,1,0) (0,0,1) (aquesta és la base canònica de R3).En canvi, els vectors (1,2,1) (2,4,2), no ho són, ja que el segon vector és dos cops el primer. Tampoc ho són (1,2,2) (2,1,4) (3,3,6), ja que (1,2,2)+(2,1,4)=(3,3,6) (o sigui, hem posat el tercer vector com a combinació lineal dels altres dos). 선형대수학에서 일차 독립 집합(一次獨立集合, 영어: linearly independent set) 또는 선형 독립 집합(線型獨立集合)은 모든 벡터가 남은 벡터들의 일차 결합으로 나타낼 수 없는 벡터들의 집합이다. Linjärt oberoende är ett centralt begrepp inom linjär algebra. En familj av vektorer sägs vara linjärt oberoende om ingen av dem kan uttryckas som en ändlig linjärkombination av de övriga.I R3 har vi till exempel kolonnvektorerna De första tre vektorerna är linjärt oberoende men den fjärde vektorn kan skrivas som 9 gånger den första plus 5 gånger den andra plus 4 gånger den tredje vektorn. Alltså är de fyra vektorerna ej linjärt oberoende. De säges då vara linjärt beroende.
rdfs:seeAlso
dbr:Affine_space
foaf:depiction
n51:Vectores_independientes.png n51:Vec-dep.png n51:Vec-indep.png
dcterms:subject
dbc:Abstract_algebra dbc:Articles_containing_proofs dbc:Linear_algebra
dbo:wikiPageID
101863
dbo:wikiPageRevisionID
1112475970
dbo:wikiPageWikiLink
dbr:Tuple dbr:Set_(mathematics) dbr:Polynomial dbr:Subset dbc:Abstract_algebra dbc:Articles_containing_proofs dbr:Linear_combination dbr:Indexed_family dbr:System_of_linear_equations dbr:Gaussian_elimination dbr:Linear_span n25:Vec-dep.png n25:Vec-indep.png n25:Vectores_independientes.png dbr:Vector_space dbr:Linear_relation dbr:If_and_only_if dbr:Matrix_(mathematics) dbr:Basis_(linear_algebra) dbr:Dimension_(vector_space) dbr:Vector_(mathematics) dbr:Row_reduction dbr:Scalar_(mathematics) dbc:Linear_algebra dbr:Determinant dbr:Standard_basis dbr:Affine_combination dbr:Direct_sum dbr:Function_(mathematics)
dbo:wikiPageExternalLink
n27:linear-algebra-introduction-to-linear-independence n55:LinearlyDependentFunctions.html n59:LinearlyIndependent.html
owl:sameAs
dbpedia-bg:Линейна_независимост dbpedia-is:Línulegt_óhæði dbpedia-eo:Lineara_sendependeco wikidata:Q27670 dbpedia-ar:استقلال_خطي dbpedia-es:Dependencia_e_independencia_lineal dbpedia-vi:Độc_lập_tuyến_tính dbpedia-ja:線型独立 dbpedia-ko:일차_독립_집합 dbpedia-cs:Lineární_nezávislost yago-res:Linear_independence dbpedia-zh:線性無關 dbpedia-no:Lineær_uavhengighet dbpedia-sl:Linearna_neodvisnost n26:Linearna_nezavisnost dbpedia-pt:Independência_linear dbpedia-fa:استقلال_خطی dbpedia-gl:Independencia_linear dbpedia-et:Lineaarne_sõltuvus dbpedia-kk:Сызықтық_тәуелділік dbpedia-sv:Linjärt_oberoende dbpedia-hr:Linearna_nezavisnost dbpedia-fr:Indépendance_linéaire dbpedia-tr:Doğrusal_bağımsızlık dbpedia-ca:Independència_lineal n41:Вобастагии_хаттӣ n42:2aJYp dbpedia-id:Kebebasan_linear dbpedia-de:Lineare_Unabhängigkeit dbpedia-uk:Лінійно_незалежні_вектори dbpedia-pl:Liniowa_niezależność freebase:m.0ptnq dbpedia-ru:Линейная_независимость dbpedia-it:Indipendenza_lineare dbpedia-he:תלות_ליניארית n52:لکیری_آزادی dbpedia-simple:Linear_independence dbpedia-hu:Lineáris_függetlenség dbpedia-nl:Lineaire_onafhankelijkheid n57:நேரியல்_சார்பின்மை dbpedia-fi:Lineaarinen_riippumattomuus
dbp:wikiPageUsesTemplate
dbt:Visible_anchor dbt:Rp dbt:For dbt:Bachman_Narici_Functional_Analysis_2nd_Edition dbt:Annotated_link dbt:Mvar dbt:Math_proof dbt:Sfn dbt:See_also dbt:Springer dbt:Em dbt:More_citations_needed dbt:Short_description dbt:Matrix_classes dbt:Reflist dbt:Math dbt:Linear_algebra
dbo:thumbnail
n51:Vec-indep.png?width=300
dbp:id
p/l059290
dbp:title
Linear independence
dbo:abstract
Linjärt oberoende är ett centralt begrepp inom linjär algebra. En familj av vektorer sägs vara linjärt oberoende om ingen av dem kan uttryckas som en ändlig linjärkombination av de övriga.I R3 har vi till exempel kolonnvektorerna De första tre vektorerna är linjärt oberoende men den fjärde vektorn kan skrivas som 9 gånger den första plus 5 gånger den andra plus 4 gånger den tredje vektorn. Alltså är de fyra vektorerna ej linjärt oberoende. De säges då vara linjärt beroende. 선형대수학에서 일차 독립 집합(一次獨立集合, 영어: linearly independent set) 또는 선형 독립 집합(線型獨立集合)은 모든 벡터가 남은 벡터들의 일차 결합으로 나타낼 수 없는 벡터들의 집합이다. En álgebra lineal, un conjunto de vectores es linealmente independiente si ninguno de ellos puede ser escrito con una combinación lineal de los restantes. Por ejemplo, en R3, el conjunto de vectores (1, 0, 0), (0, 1, 0) y (0, 0, 1) es linealmente independiente, mientras que (2, −1, 1), (1, 0, 1) y (3, −1, 2) no lo es, ya que el tercero es la suma de los dos primeros. В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым. Binnen een vectorruimte over een lichaam (Ned) / veld (Be) wordt een stelsel vectoren aangeduid als lineair onafhankelijk of vrij, als geen van deze vectoren een lineaire combinatie is van de andere vectoren. 線型代数学において、n 本のベクトルが線型独立(せんけいどくりつ、英: linearly independent)または一次独立であるとは、それらのベクトルが張る空間が n 次元部分線形空間になることである。 線型独立であるベクトルたちは、何れも、零ベクトルでない。 具体的には、n 本のベクトル v1, …, vn が線型独立であるとは、 をスカラーとして、 が成り立つことである()。 線型独立でないことを線型従属(一次従属)という。 Em álgebra linear, um conjunto de vectores diz-se linearmente independente se nenhum dos seus elementos for combinação linear dos outros. Liniowa niezależność – własność algebraiczna rodziny wektorów danej przestrzeni liniowej polegająca na tym, że żaden z nich nie może być przedstawiony jako kombinacja liniowa skończenie wielu innych wektorów ze zbioru. Rodzinę wektorów, która nie jest liniowo niezależna, nazywa się liniowo zależną. In matematica, e più precisamente in algebra lineare, l'indipendenza lineare di un insieme di vettori appartenenti ad uno spazio vettoriale si verifica se nessuno di questi può essere espresso come una combinazione lineare degli altri. In caso contrario si dice che l'insieme di vettori è linearmente dipendente. L'indipendenza di vettori in può essere verificata tramite il determinante della matrice ottenuta affiancando le n-uple che esprimono i vettori in una data base: questi sono indipendenti precisamente quando la matrice che formano ha determinante diverso da zero. Questo procedimento di calcolo è però in generale dispendioso, e conviene piuttosto utilizzare l'algoritmo di Gauss-Jordan. In the theory of vector spaces, a set of vectors is said to be linearly dependent if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be linearly independent. These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden. Äquivalent dazu ist (sofern die Familie nicht nur aus dem Nullvektor besteht), dass sich keiner der Vektoren als Linearkombination der anderen Vektoren der Familie darstellen lässt. Andernfalls heißen sie linear abhängig. In diesem Fall lässt sich mindestens einer der Vektoren (aber nicht notwendigerweise jeder) als Linearkombination der anderen darstellen. Zum Beispiel sind im dreidimensionalen euklidischen Raum die Vektoren , und linear unabhängig. Die Vektoren , und sind hingegen linear abhängig, denn der dritte Vektor ist die Summe der beiden ersten, d. h. die Differenz von der Summe der ersten beiden und dem dritten ist der Nullvektor. Die Vektoren , und sind wegen ebenfalls linear abhängig; jedoch ist hier der dritte Vektor nicht als Linearkombination der beiden anderen darstellbar. Лінійно незалежні вектори (лінійна незалежність множини векторів) — множина векторів, які не утворюють тривіальних лінійних комбінацій рівних нулю. En algèbre linéaire, étant donnée une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée. في الجبر الخطي، تدعى مجموعة من المتجهات مجموعة مستقلّة خطيًا إذا كان من المستحيل كتابة أيّ من المتجهات في المجموعة كتركيبة خطية من عدد نهائي من المتجهات الأخرى في المجموعة. إذا لم يتحقّق ذلك، تسمّى هذه المجموعة مجموعة تابعة خطيًا. لنأخذ على سبيل المثال أربعة متّجهات في الفضاء الشعاعي الحقيقي ثلاثي الأبعاد، : في هذا المثال، فإنّ المتجهات الثلاثة الأولى هي مستقلّة خطيًا، في حين مجموعة المتجهات الأربعة هي تابعة خطيًا (غير مستقلة). السبب يعود إلى إمكانيّة تكوين المتجه كالتالي: والحقيقة هي أنّ خاصّة التابعيّة الخطّية ليست خاصة لمتجه واحد دون غيره إنّما هي خاصّة لمجموعة المتجهات، بما معناه أنّه في مجموعة تابعة خطيًا، بالإمكان تكوين أي متجه من المجموعة بواسطة تركيبة خطية للمتجهات الأخرى. فعلى سبيل المثال، بالإمكان الحصول على المتجه كالتالي: 在線性代數裡,向量空間的一組元素中,若沒有向量可用有限個其他向量的線性組合所表示,则稱為線性無關或線性獨立(linearly independent),反之稱為線性相關(linearly dependent)。例如在三維歐幾里得空間R3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。 En lineara algebro, familio de vektoroj el vektora spaco estas lineare sendependa, se neniu el ili povas esti skribata kiel lineara kombinaĵo de finie multaj aliaj vektoroj. Ekzemple, en la tri-dimensia Eŭklida spaco R3, la tri vektoroj (1, 0, 0), (0, 1, 0) kaj (0, 0, 1) estas lineare sendependaj, dum (2, −1, 1), (1, 0, 1) kaj (3, −1, 2) ne estas tiaj. (La tria vektoro estas la sumo de la unuaj du.) Vektoroj, kiuj ne estas lineare sendependaj, nomiĝas lineare dependaj. En àlgebra lineal, un conjunt de vectors és linealment independent (l.i.) si cap d'ells es pot escriure com a combinació lineal dels altres. Un exemple en R3 de conjunt vectors linealment independents és: (1,0,0) (0,1,0) (0,0,1) (aquesta és la base canònica de R3).En canvi, els vectors (1,2,1) (2,4,2), no ho són, ja que el segon vector és dos cops el primer. Tampoc ho són (1,2,2) (2,1,4) (3,3,6), ja que (1,2,2)+(2,1,4)=(3,3,6) (o sigui, hem posat el tercer vector com a combinació lineal dels altres dos). Una definició que es pot demostrar que és equivalent a l'anterior és: Sigui {v1, v₂, ..., vn} un conjunt de vectors. Diem que són linealment independents si l'equació implica necessàriament que els coeficients a1, a₂, ..., an són tots 0. Un conjunt linealment independent que generi l'espai vectorial és una base d'aquest espai. D'aquí es dedueix que qualsevol conjunt de vectors linealment independent és base del subespai que genera. Per comprovar si són l.i. es pot aplicar la fórmula ja anomenada, o bé es poden col·locar els vectors per columna i esglaonar la matriu. Si el rang és màxim, els vectors són linealment independents. Ústředním konceptem lineární algebry je pojem lineární nezávislosti potažmo lineární závislosti vektorů z daného vektorového prostoru. Pomocí tohoto pojmu se definují další velmi důležité objekty lineární algebry, jako je například báze vektorového prostoru.Máme-li soubor několika vektorů, pak lineární závislost je matematicky zachycená intuitivní představa o tom, že lze jeden vektor vyjádřit pomocí ostatních, pokud jsou si tyto vektory dostatečně podobné. Pokud jsou tyto vektory příliš rozdílné, pak nedokážeme sčítáním či prodlužováním vyjádřit jeden vektor pomocí zbylých. Takové vektory jsou lineárně nezávislé. Dalam aljabar linear, sekelompok vektor disebut bebas linear apabila masing-masingnya tidak dapat ditulis sebagai kombinasi linear dari vektor-vektor yang lain. Sekelompok vektor yang tidak memenuhi syarat ini dinamakan bergantung linier. Sebagai contoh, dalam sebuah ruang vektor riil tiga dimensi kita bisa mengambil tiga vektor berikut: Tiga vektor pertama adalah bebas linear, namun vektor keempat sama dengan 9 kali vektor pertama ditambah 5 kali vektor kedua ditambah 4 kali vektor ketiga, sehingga keempat vektor tersebut bergantung linear. Kebebasan linear adalah sifat sekelompok vektor, bukan sifat vektor tunggal. Kita dapat menulis vektor pertama sebagai kombinasi linear tiga vektor berikutnya.
prov:wasDerivedFrom
wikipedia-en:Linear_independence?oldid=1112475970&ns=0
dbo:wikiPageLength
25369
foaf:isPrimaryTopicOf
wikipedia-en:Linear_independence