This HTML5 document contains 150 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n6http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Capacitor
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electret
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electric_potential
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electro-osmosis
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electrokinetic_phenomena
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electrophoresis
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electrophoretic_light_scattering
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electrostatic_generator
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electrostatics
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electroviscous_effects
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Beryl_May_Dent
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Biomaterial
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Anomalous_photovoltaic_effect
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Double_layer_(surface_science)
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Double_layer_forces
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Index_of_physics_articles_(S)
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Induced-charge_electrokinetics
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Interface_conditions_for_electromagnetic_fields
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Electric_surface_charge
dbo:wikiPageWikiLink
dbr:Surface_charge
dbo:wikiPageRedirects
dbr:Surface_charge
Subject Item
dbr:Sigma
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Particle_aggregation
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Protein_adsorption_in_the_food_industry
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Pseudopodia
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Surface_chemistry_of_paper
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Coulter_counter
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Microbial_enhanced_oil_recovery
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Gerhard_Lagaly
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Crookes_tube
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Colloid_vibration_current
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Colloidal_probe_technique
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Froth_flotation
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Hazard_substitution
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Health_and_safety_hazards_of_nanomaterials
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Ionic_potential
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Surface_conductivity
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Band_bending
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Cell_migration
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Differential_capacitance
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Fajans–Paneth–Hahn_Law
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Kelvin_probe_force_microscope
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Particle_deposition
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Louis_Georges_Gouy
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Cream_cheese
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Sporosarcina_pasteurii
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Surface_charges
dbo:wikiPageWikiLink
dbr:Surface_charge
dbo:wikiPageRedirects
dbr:Surface_charge
Subject Item
dbr:Charge_density
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Titration
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Double_layer_(biology)
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Filtration
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Greek_letters_used_in_mathematics,_science,_and_engineering
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Cationization_of_cotton
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Work_function
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Toxicology_of_carbon_nanomaterials
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Nanofluidics
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Nanomaterials
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Poly(amidoamine)
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Polyelectrolyte
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Polysialic_acid
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Sedimentation_potential
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Sand_filter
dbo:wikiPageWikiLink
dbr:Surface_charge
Subject Item
dbr:Surface_charge
rdf:type
dbo:Disease
rdfs:label
Surface charge 表面电荷 Gouy-Chapman-Doppelschicht
rdfs:comment
表面电荷即在界面处存在的电荷。有很多过程可以使表面带电,比如离子吸附、质子化或去质子化、表面的化学基团发生电离、外加电场。表面电荷会产生电场,使粒子之间有排斥或吸引的相互作用,这是很多胶体性质的成因。 物体处于流体中一般都會带上电荷。几乎所有的流体都会含有离子,包括正离子(阳离子)和负离子(阴离子),离子与表面會有相互作用,导致有离子吸附到物体表面。 另外一个表面电荷的机制是,表面的化学基团发生电离。 Surface charge is a two-dimensional surface with non-zero electric charge. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge distribution on the surface. The electric potential is continuous across a surface charge and the electric field is discontinuous, but not infinite; this is unless the surface charge consists of a dipole layer. In comparison, the potential and electric field both diverge at any point charge or linear charge. Das Modell der Gouy-Chapman-Doppelschicht ist eine Weiterentwicklung des einfachen Modells einer elektrischen Doppelschicht nach Helmholtz.Neu ist hierbei, dass die thermische Bewegung der Lösungsmittelmoleküle sowie der Ionen berücksichtigt wird, welche die Vorstellung einer starren Ionenschicht des helmholtzschen Modells widerlegen. Diese thermische Bewegung führt dazu, dass sich eine diffuse Schicht bildet, die ausgedehnter ist als eine Moleküllage. Dabei wird eine statistische Verteilung der Ionen angenommen, wie sie später auch in der Debye-Hückel-Theorie (Debye-Hückel-Onsagerschen Theorie) postuliert wurde. Entsprechend diesen Überlegungen ergibt sich über die diffuse Schicht hinweg ein exponentieller Abfall des Potentials. Da die Ionen in dieser Theorie als punktförmig angenommen we
foaf:depiction
n6:Stern_Layer.png n6:Electro-osmosis.png n6:Guoy-Chapman_Double_Layer.png
dcterms:subject
dbc:Electric_charge
dbo:wikiPageID
2228726
dbo:wikiPageRevisionID
1058171281
dbo:wikiPageWikiLink
n4:Stern_Layer.png dbr:Electric_potential n4:Electro-osmosis.png dbr:Boltzmann_constant dbr:Electrical_resistivity_and_conductivity dbr:Electric_field dbr:Continuous_function dbr:Silicon_carbide dbr:Streaming_potential dbr:Skin_effect dbr:Anions dbr:Manganese(IV)_oxide dbr:Flocculation dbr:Polarization_density dbr:Poisson's_equation dbr:Point_charge dbr:Dissociation_(chemistry) dbr:Thallium(I)_oxide dbr:Van_der_Waals_force dbc:Electric_charge dbr:Potential_gradient dbr:Electrolytes dbr:Glutamic_acid n4:Guoy-Chapman_Double_Layer.png dbr:PH dbr:Partial_charge dbr:Fluid dbr:Nickel(II)_oxide dbr:Electrokinetic_phenomena dbr:Zeta_potential dbr:Louis_Georges_Gouy dbr:Electro-osmosis dbr:Electric_charge dbr:Sedimentation_potential dbr:Colloid dbr:Hermann_von_Helmholtz dbr:Electrophoresis dbr:Tungsten(VI)_oxide dbr:Ions dbr:Electrical_charge dbr:Surface_charge_density dbr:Cations dbr:Adsorption dbr:Bound_Charge dbr:Dielectric dbr:Silicon_nitride dbr:Proteins dbr:Active_site dbr:Double_layer_(interfacial) dbr:Debye_length dbr:Point_of_zero_charge dbr:Otto_Stern dbr:Copper(II)_oxide dbr:Capacitor dbr:Chemical_group dbr:Gauss's_law
owl:sameAs
dbpedia-de:Gouy-Chapman-Doppelschicht dbpedia-zh:表面电荷 n16:YZ5V freebase:m.06xmyv wikidata:Q1540423
dbp:wikiPageUsesTemplate
dbt:Main dbt:Short_description dbt:Full_citation_needed
dbo:thumbnail
n6:Guoy-Chapman_Double_Layer.png?width=300
dbo:abstract
Das Modell der Gouy-Chapman-Doppelschicht ist eine Weiterentwicklung des einfachen Modells einer elektrischen Doppelschicht nach Helmholtz.Neu ist hierbei, dass die thermische Bewegung der Lösungsmittelmoleküle sowie der Ionen berücksichtigt wird, welche die Vorstellung einer starren Ionenschicht des helmholtzschen Modells widerlegen. Diese thermische Bewegung führt dazu, dass sich eine diffuse Schicht bildet, die ausgedehnter ist als eine Moleküllage. Dabei wird eine statistische Verteilung der Ionen angenommen, wie sie später auch in der Debye-Hückel-Theorie (Debye-Hückel-Onsagerschen Theorie) postuliert wurde. Entsprechend diesen Überlegungen ergibt sich über die diffuse Schicht hinweg ein exponentieller Abfall des Potentials. Da die Ionen in dieser Theorie als punktförmig angenommen werden, können sie beliebig nahe an die Oberfläche der betreffenden Phase gelangen. Mit dieser Beschreibung wird dem realen Fall von Ionen mit eigener Ausdehnung nicht genüge getan. Eine Weiterentwicklung der Doppelschicht-Theorie, die diesen Fall berücksichtigt, ist die Stern-Doppelschicht nach Otto Stern. Die Gouy-Chapman-Doppelschicht ist nach dem französischen Physiker Louis Georges Gouy und dem britischen Physikochemiker David Leonard Chapman benannt. Gouy, der schon 1888 eine detaillierte Studie über die Brownsche Bewegung veröffentlicht hatteund daher mit der Bewegung der Moleküle und Ionen in Lösungen vertraut war, veröffentlichte seinen Artikel über die Doppelschicht 1909/1910.Chapman veröffentlichte seine Arbeit 1913. 表面电荷即在界面处存在的电荷。有很多过程可以使表面带电,比如离子吸附、质子化或去质子化、表面的化学基团发生电离、外加电场。表面电荷会产生电场,使粒子之间有排斥或吸引的相互作用,这是很多胶体性质的成因。 物体处于流体中一般都會带上电荷。几乎所有的流体都会含有离子,包括正离子(阳离子)和负离子(阴离子),离子与表面會有相互作用,导致有离子吸附到物体表面。 另外一个表面电荷的机制是,表面的化学基团发生电离。 Surface charge is a two-dimensional surface with non-zero electric charge. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge distribution on the surface. The electric potential is continuous across a surface charge and the electric field is discontinuous, but not infinite; this is unless the surface charge consists of a dipole layer. In comparison, the potential and electric field both diverge at any point charge or linear charge. In physics, at equilibrium, an ideal conductor has no charge on its interior; instead, the entirety of the charge of the conductor resides on the surface. However, this only applies to the ideal case of infinite electrical conductivity; The majority of the charge of an actual conductor resides within the skin depth of the conductor's surface. For dielectric materials, upon the application of an external electric field, the positive charges and negative charges in the material will slightly move in opposite directions, resulting in polarization density in the bulk body and bound charge at the surface. In chemistry, there are many different processes which can lead to a surface being charged, including adsorption of ions, protonation/deprotonation, and, as discussed above, the application of an external electric field. Surface charge emits an electric field, which causes particle repulsion and attraction, affecting many colloidal properties. Surface charge practically always appears on the particle surface when it is placed into a fluid. Most fluids contain ions, positive (cations) and negative (anions). These ions interact with the object surface. This interaction might lead to the adsorption of some of them onto the surface. If the number of adsorbed cations exceeds the number of adsorbed anions, the surface would have a net positive electric charge. Dissociation of the surface chemical group is another possible mechanism leading to surface charge.
gold:hypernym
dbr:Difference
prov:wasDerivedFrom
wikipedia-en:Surface_charge?oldid=1058171281&ns=0
dbo:wikiPageLength
20027
foaf:isPrimaryTopicOf
wikipedia-en:Surface_charge
Subject Item
dbr:Surface_potential
dbo:wikiPageWikiLink
dbr:Surface_charge
dbo:wikiPageRedirects
dbr:Surface_charge
Subject Item
wikipedia-en:Surface_charge
foaf:primaryTopic
dbr:Surface_charge