This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n8http://dbpedia.org/resource/File:
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n10http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Zero-divisor_graph
rdfs:label
Zero-divisor graph
rdfs:comment
In mathematics, and more specifically in combinatorial commutative algebra, a zero-divisor graph is an undirected graph representing the zero divisors of a commutative ring. It has elements of the ring as its vertices, and pairs of elements whose product is zero as its edges.
foaf:depiction
n10:Zero-divisor_graph_of_Z2xZ4.svg
dct:subject
dbc:Application-specific_graphs dbc:Commutative_algebra
dbo:wikiPageID
57837828
dbo:wikiPageRevisionID
1112699913
dbo:wikiPageWikiLink
dbr:Commutative_ring dbr:Universal_vertex dbr:Tree_(graph_theory) dbr:Vertex_(graph_theory) dbr:Perfect_graph dbr:Complete_bipartite_graph n8:Zero-divisor_graph_of_Z2xZ4.svg dbr:Star_(graph_theory) dbc:Application-specific_graphs dbr:Girth_(graph_theory) dbr:Complete_graph dbr:Edge_(graph_theory) dbr:Clique_number dbr:Product_ring dbr:Integral_domain dbr:Zero_divisor dbr:Undirected_graph dbr:Combinatorial_commutative_algebra dbr:Semiprime_number dbc:Commutative_algebra dbr:Chromatic_number dbr:Prime_number dbr:Cycle_graph
owl:sameAs
wikidata:Q55638229 n12:8aXpp
dbp:wikiPageUsesTemplate
dbt:R dbt:Reflist dbt:Harvtxt
dbo:thumbnail
n10:Zero-divisor_graph_of_Z2xZ4.svg?width=300
dbo:abstract
In mathematics, and more specifically in combinatorial commutative algebra, a zero-divisor graph is an undirected graph representing the zero divisors of a commutative ring. It has elements of the ring as its vertices, and pairs of elements whose product is zero as its edges.
prov:wasDerivedFrom
wikipedia-en:Zero-divisor_graph?oldid=1112699913&ns=0
dbo:wikiPageLength
5882
foaf:isPrimaryTopicOf
wikipedia-en:Zero-divisor_graph
Subject Item
dbr:Combinatorial_commutative_algebra
dbo:wikiPageWikiLink
dbr:Zero-divisor_graph
Subject Item
dbr:Zero_divisor
dbo:wikiPageWikiLink
dbr:Zero-divisor_graph
Subject Item
wikipedia-en:Zero-divisor_graph
foaf:primaryTopic
dbr:Zero-divisor_graph