This HTML5 document contains 105 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
n14https://www.youtube.com/
dbohttp://dbpedia.org/ontology/
n22http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n21http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-nlhttp://nl.dbpedia.org/resource/
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Aperture_synthesis
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Van_Cittert–Zernike_theorem
rdf:type
yago:Eye105311054 yago:PhysicalEntity100001930 yago:WikicatOptics yago:Part109385911 yago:Thing100002452 dbo:Agent yago:BodyPart105220461 yago:SenseOrgan105299178 yago:Organ105297523
rdfs:label
Van Cittert–Zernike-theorema Van Cittert–Zernike theorem 范西特-泽尼克定理
rdfs:comment
Het Van Cittert–Zernike-theorema is een stelling uit de fysische optica waarmee bewezen wordt dat de coherentie van straling uit een verre, monochromatische bron gelijk is aan de Fouriertransformatie van de intensiteitsverdeling van de bron. Pieter Hendrik van Cittert bewees het theorema in 1934.Frits Zernike vond in 1938 een eenvoudiger afleiding zodat de stelling als het Van Cittert–Zernike-theorema bekendstaat. Met dit theorema is de gedeeltelijke ruimtelijke coherentie van straling te berekenen. Het is van belang voor apertuursynthese in de radioastronomie, adaptieve optiek van telescopen, lasers en vrije-elektronenlasers als gedeeltelijk coherente stralingsbronnen. 范西特-泽尼克定理是相干性理论中的一个公式,它研究的是单色扩展光源光场的空间相干性。它表明了在一定条件下,一个远距离的非相干源共有相干方程的傅里叶变换等于它的复合能见度。这说明了一个不相干源的波前会在远距离相干地出现。如果我们在一个源前测量波前,我们的测量会被周围的源所主导。如果我们在远离该源的情况下做同样的测试,我们测量则不会被某一个源所主导,两个源几乎等量地对波前产生影响。 原因可以简单地被形象化,就像往一个平静的池塘内扔两块石头。在湖心附近,由两个石头带来的干扰非常复杂。当干扰传播至池塘边缘时,波会变得平滑并且看起来几乎是圆形的。 定理在1934年由范西特(P. H. van Cittert)得出,1938年泽尼克(Frits Zernike)做出了简略证明。 The van Cittert–Zernike theorem, named after physicists Pieter Hendrik van Cittert and Frits Zernike, is a formula in coherence theory that states that under certain conditions the Fourier transform of the intensity distribution function of a distant, incoherent source is equal to its complex visibility. This implies that the wavefront from an incoherent source will appear mostly coherent at large distances. Intuitively, this can be understood by considering the wavefronts created by two incoherent sources. If we measure the wavefront immediately in front of one of the sources, our measurement will be dominated by the nearby source. If we make the same measurement far from the sources, our measurement will no longer be dominated by a single source; both sources will contribute almost equal
foaf:depiction
n21:Van_Cittert-Zernike_theorem.jpg
dct:subject
dbc:Equations_of_astronomy dbc:Physical_optics dbc:Radio_astronomy
dbo:wikiPageID
30860655
dbo:wikiPageRevisionID
1065795549
dbo:wikiPageWikiLink
dbr:Frits_Zernike dbr:Radio_astronomy dbr:Phasor dbr:Earth's_atmosphere dbr:Angular_frequency dbr:Direction_cosine dbr:Refractive_index dbr:Astrophysical_maser dbr:CLEAN_(algorithm) dbr:Pieter_Hendrik_van_Cittert dbr:Bose–Einstein_correlations dbc:Equations_of_astronomy dbr:Refraction dbr:Superposition_principle dbr:Far_field dbr:Complex_amplitude dbr:Free-electron_laser dbr:Band_matrix dbr:Hanbury_Brown_and_Twiss_effect dbr:Aperture_synthesis dbr:Taylor_series dbc:Physical_optics dbr:Interferometric_visibility dbr:Interstellar_medium dbr:Intergalactic_medium dbr:Nyquist_sampling_theorem dbr:Degree_of_coherence dbr:Adaptive_optics dbr:Wavefront dbc:Radio_astronomy dbr:Coherence_theory_(optics) dbr:Pulsars dbr:Fourier_transform dbr:Parsec dbr:Mutual_coherence_(linear_algebra) n22:Van_Cittert-Zernike_theorem.jpg dbr:Bandpass_filter dbr:Electric_field dbr:Solid_angle dbr:Radio_telescope dbr:Light dbr:Solar_System dbr:Cross-correlation dbr:Interferometric__visibility dbr:Very_Large_Array
dbo:wikiPageExternalLink
n14:watch%3Fv=3Q_IwvWBQMc
owl:sameAs
dbpedia-nl:Van_Cittert–Zernike-theorema dbpedia-zh:范西特-泽尼克定理 n15:2AMwg freebase:m.0gfdyt4 wikidata:Q2298452
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:More_footnotes dbt:Confusing dbt:Multiple_issues dbt:Aut
dbo:thumbnail
n21:Van_Cittert-Zernike_theorem.jpg?width=300
dbo:abstract
Het Van Cittert–Zernike-theorema is een stelling uit de fysische optica waarmee bewezen wordt dat de coherentie van straling uit een verre, monochromatische bron gelijk is aan de Fouriertransformatie van de intensiteitsverdeling van de bron. Pieter Hendrik van Cittert bewees het theorema in 1934.Frits Zernike vond in 1938 een eenvoudiger afleiding zodat de stelling als het Van Cittert–Zernike-theorema bekendstaat. Met dit theorema is de gedeeltelijke ruimtelijke coherentie van straling te berekenen. Het is van belang voor apertuursynthese in de radioastronomie, adaptieve optiek van telescopen, lasers en vrije-elektronenlasers als gedeeltelijk coherente stralingsbronnen. The van Cittert–Zernike theorem, named after physicists Pieter Hendrik van Cittert and Frits Zernike, is a formula in coherence theory that states that under certain conditions the Fourier transform of the intensity distribution function of a distant, incoherent source is equal to its complex visibility. This implies that the wavefront from an incoherent source will appear mostly coherent at large distances. Intuitively, this can be understood by considering the wavefronts created by two incoherent sources. If we measure the wavefront immediately in front of one of the sources, our measurement will be dominated by the nearby source. If we make the same measurement far from the sources, our measurement will no longer be dominated by a single source; both sources will contribute almost equally to the wavefront at large distances. This reasoning can be easily visualized by dropping two stones in the center of a calm pond. Near the center of the pond, the disturbance created by the two stones will be very complicated. As the disturbance propagates towards the edge of the pond, however, the waves will smooth out and will appear to be nearly circular. The van Cittert–Zernike theorem has important implications for radio astronomy. With the exception of pulsars and masers, all astronomical sources are spatially incoherent. Nevertheless, because they are observed at distances large enough to satisfy the van Cittert–Zernike theorem, these objects exhibit a non-zero degree of coherence at different points in the imaging plane. By measuring the degree of coherence at different points in the imaging plane (the so-called "visibility function") of an astronomical object, a radio astronomer can thereby reconstruct the source's brightness distribution and make a two-dimensional map of the source's appearance. 范西特-泽尼克定理是相干性理论中的一个公式,它研究的是单色扩展光源光场的空间相干性。它表明了在一定条件下,一个远距离的非相干源共有相干方程的傅里叶变换等于它的复合能见度。这说明了一个不相干源的波前会在远距离相干地出现。如果我们在一个源前测量波前,我们的测量会被周围的源所主导。如果我们在远离该源的情况下做同样的测试,我们测量则不会被某一个源所主导,两个源几乎等量地对波前产生影响。 原因可以简单地被形象化,就像往一个平静的池塘内扔两块石头。在湖心附近,由两个石头带来的干扰非常复杂。当干扰传播至池塘边缘时,波会变得平滑并且看起来几乎是圆形的。 定理在1934年由范西特(P. H. van Cittert)得出,1938年泽尼克(Frits Zernike)做出了简略证明。
gold:hypernym
dbr:Formula
prov:wasDerivedFrom
wikipedia-en:Van_Cittert–Zernike_theorem?oldid=1065795549&ns=0
dbo:wikiPageLength
24742
foaf:isPrimaryTopicOf
wikipedia-en:Van_Cittert–Zernike_theorem
Subject Item
dbr:Degree_of_coherence
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Frits_Zernike
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
dbp:knownFor
dbr:Van_Cittert–Zernike_theorem
dbo:knownFor
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Spontaneous_parametric_down-conversion
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Adaptive_optics
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Coherence_theory_(optics)
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Pieter_Hendrik_van_Cittert
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Van_Cittert-Zernicke_Theorem
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
dbo:wikiPageRedirects
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Van_cittert-zernicke_theorem
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
dbo:wikiPageRedirects
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Van_Cittert-Zernike_Theorem
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
dbo:wikiPageRedirects
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Van_Cittert-Zernike_theorem
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
dbo:wikiPageRedirects
dbr:Van_Cittert–Zernike_theorem
Subject Item
dbr:Mutual_coherence_function
dbo:wikiPageWikiLink
dbr:Van_Cittert–Zernike_theorem
dbo:wikiPageRedirects
dbr:Van_Cittert–Zernike_theorem
Subject Item
wikipedia-en:Van_Cittert–Zernike_theorem
foaf:primaryTopic
dbr:Van_Cittert–Zernike_theorem