This HTML5 document contains 65 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n19https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n15https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_XML_and_HTML_character_entity_references
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:⋔
dbo:wikiPageWikiLink
dbr:Transversality_theorem
dbo:wikiPageRedirects
dbr:Transversality_theorem
Subject Item
dbr:⫛
dbo:wikiPageWikiLink
dbr:Transversality_theorem
dbo:wikiPageRedirects
dbr:Transversality_theorem
Subject Item
dbr:Thom_space
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Transversality_(mathematics)
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Transversality
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Jet_(mathematics)
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Transversality_theorem
rdf:type
yago:Proposition106750804 yago:WikicatMathematicalTheorems yago:WikicatTheoremsInDifferentialTopology yago:Statement106722453 yago:Abstraction100002137 yago:Message106598915 yago:Theorem106752293 yago:Communication100033020
rdfs:label
Transversalitätssatz Transversality theorem
rdfs:comment
Der Transversalitätssatz ist ein auf René Thom zurückgehender Satz der Differentialtopologie, der die Grundlage für zahlreiche topologische Konstruktionen wie zum Beispiel die , die Kobordismustheorie, sowie die Definition von Schnittzahlen und Verschlingungszahlen bildet. In differential topology, the transversality theorem, also known as the Thom transversality theorem after French mathematician René Thom, is a major result that describes the transverse intersection properties of a smooth family of smooth maps. It says that transversality is a generic property: any smooth map , may be deformed by an arbitrary small amount into a map that is transverse to a given submanifold . Together with the Pontryagin–Thom construction, it is the technical heart of cobordism theory, and the starting point for surgery theory. The finite-dimensional version of the transversality theorem is also a very useful tool for establishing the genericity of a property which is dependent on a finite number of real parameters and which is expressible using a system of nonlinear equat
dcterms:subject
dbc:Theorems_in_differential_topology dbc:Differential_geometry
dbo:wikiPageID
22667049
dbo:wikiPageRevisionID
1012856223
dbo:wikiPageWikiLink
dbr:Surgery_theory dbr:Transversality_(mathematics) dbr:Fredholm_operator dbc:Theorems_in_differential_topology dbr:René_Thom dbr:John_Mather_(mathematician) dbr:Jet_(mathematics) dbr:Thom_space dbr:Manifold dbc:Differential_geometry dbr:Generic_property dbr:France dbr:Cobordism_theory dbr:Differential_topology dbr:Commentarii_Mathematici_Helvetici
dbo:wikiPageExternalLink
n15:springer_10.1007-978-1-4684-9449-5 n15:geometricalmetho0000arno_o8o1
owl:sameAs
yago-res:Transversality_theorem dbpedia-de:Transversalitätssatz freebase:m.05zl4p2 wikidata:Q116677 n19:DZ88
dbp:wikiPageUsesTemplate
dbt:Citation_needed dbt:Cite_journal dbt:Short_description dbt:Cite_book dbt:Anchor
dbo:abstract
In differential topology, the transversality theorem, also known as the Thom transversality theorem after French mathematician René Thom, is a major result that describes the transverse intersection properties of a smooth family of smooth maps. It says that transversality is a generic property: any smooth map , may be deformed by an arbitrary small amount into a map that is transverse to a given submanifold . Together with the Pontryagin–Thom construction, it is the technical heart of cobordism theory, and the starting point for surgery theory. The finite-dimensional version of the transversality theorem is also a very useful tool for establishing the genericity of a property which is dependent on a finite number of real parameters and which is expressible using a system of nonlinear equations. This can be extended to an infinite-dimensional parametrization using the infinite-dimensional version of the transversality theorem. Der Transversalitätssatz ist ein auf René Thom zurückgehender Satz der Differentialtopologie, der die Grundlage für zahlreiche topologische Konstruktionen wie zum Beispiel die , die Kobordismustheorie, sowie die Definition von Schnittzahlen und Verschlingungszahlen bildet.
prov:wasDerivedFrom
wikipedia-en:Transversality_theorem?oldid=1012856223&ns=0
dbo:wikiPageLength
8348
foaf:isPrimaryTopicOf
wikipedia-en:Transversality_theorem
Subject Item
dbr:Whitney_conditions
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Sphere_theorem_(3-manifolds)
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Transverse_knot
dbo:wikiPageWikiLink
dbr:Transversality_theorem
Subject Item
dbr:Thom’s_transversality_theorem
dbo:wikiPageWikiLink
dbr:Transversality_theorem
dbo:wikiPageRedirects
dbr:Transversality_theorem
Subject Item
dbr:Thom_transversality_theorem
dbo:wikiPageWikiLink
dbr:Transversality_theorem
dbo:wikiPageRedirects
dbr:Transversality_theorem
Subject Item
wikipedia-en:Transversality_theorem
foaf:primaryTopic
dbr:Transversality_theorem