This HTML5 document contains 61 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n16http://www.numdam.org/item/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n17http://www.math.sunysb.edu/~kirillov/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
n12http://www.math.harvard.edu/~gaitsgde/grad_2009/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Barry_Mazur
dbo:wikiPageWikiLink
dbr:Tate_vector_space
Subject Item
dbr:John_Tate_(mathematician)
dbo:wikiPageWikiLink
dbr:Tate_vector_space
Subject Item
dbr:Tate_Lie_algebra
dbo:wikiPageWikiLink
dbr:Tate_vector_space
dbo:wikiPageRedirects
dbr:Tate_vector_space
Subject Item
dbr:Alexander_Beilinson
dbo:wikiPageWikiLink
dbr:Tate_vector_space
dbp:knownFor
dbr:Tate_vector_space
dbo:knownFor
dbr:Tate_vector_space
Subject Item
dbr:Sum_of_residues_formula
dbo:wikiPageWikiLink
dbr:Tate_vector_space
Subject Item
dbr:Tate_vector_space
rdfs:label
Tate vector space
rdfs:comment
In mathematics, a Tate vector space is a vector space obtained from finite-dimensional vector spaces in a way that makes it possible to extend concepts such as dimension and determinant to an infinite-dimensional situation. Tate spaces were introduced by Alexander Beilinson, Boris Feigin, and Barry Mazur, who named them after John Tate.
dcterms:subject
dbc:Algebraic_geometry dbc:Lie_algebras
dbo:wikiPageID
37909247
dbo:wikiPageRevisionID
1045235664
dbo:wikiPageWikiLink
dbr:Direct_limit dbr:Determinant dbc:Algebraic_geometry dbr:Sum_of_residues_formula dbr:Ind-object dbr:Determinant_torsor dbr:John_Tate_(mathematician) dbr:Vector_space dbr:Dimension_(linear_algebra) dbr:Ring_(mathematics) dbr:Exact_category dbr:Commensurability_(group_theory) dbr:Riemann–Roch_theorem dbr:Power_series_ring dbr:Short_exact_sequence dbc:Lie_algebras dbr:Weil_reciprocity dbr:Laurent_series dbr:Formal_power_series dbr:Inverse_limit
dbo:wikiPageExternalLink
n12:%7Cseries=Harvard n16:%3Fid=ASENS_1968_4_1_1_149_0 n17:manuscripts.html
owl:sameAs
n14:2qbh2 wikidata:Q30704533
dbp:wikiPageUsesTemplate
dbt:Harvtxt dbt:Citation dbt:Harvs
dbp:first
Boris Barry Alexander
dbp:last
Mazur Feigin Beilinson
dbp:year
1991
dbo:abstract
In mathematics, a Tate vector space is a vector space obtained from finite-dimensional vector spaces in a way that makes it possible to extend concepts such as dimension and determinant to an infinite-dimensional situation. Tate spaces were introduced by Alexander Beilinson, Boris Feigin, and Barry Mazur, who named them after John Tate.
dbp:author1Link
Alexander Beilinson
dbp:author2Link
Boris Feigin
dbp:author3Link
Barry Mazur
prov:wasDerivedFrom
wikipedia-en:Tate_vector_space?oldid=1045235664&ns=0
dbo:wikiPageLength
7757
foaf:isPrimaryTopicOf
wikipedia-en:Tate_vector_space
Subject Item
dbr:Tate_object
dbo:wikiPageWikiLink
dbr:Tate_vector_space
dbo:wikiPageRedirects
dbr:Tate_vector_space
Subject Item
dbr:Tate_space
dbo:wikiPageWikiLink
dbr:Tate_vector_space
dbo:wikiPageRedirects
dbr:Tate_vector_space
Subject Item
wikipedia-en:Tate_vector_space
foaf:primaryTopic
dbr:Tate_vector_space