This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n9http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n17http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hypercube_graph
dbo:wikiPageWikiLink
dbr:Szymanski's_conjecture
Subject Item
dbr:List_of_permutation_topics
dbo:wikiPageWikiLink
dbr:Szymanski's_conjecture
Subject Item
dbr:Szymanski's_conjecture
rdf:type
yago:Abstraction100002137 yago:PsychologicalFeature100023100 yago:WikicatConjectures yago:Cognition100023271 yago:Content105809192 yago:Concept105835747 yago:Speculation105891783 yago:Hypothesis105888929 yago:Idea105833840
rdfs:label
Szymanski's conjecture
rdfs:comment
In mathematics, Szymanski's conjecture, named after Ted H. Szymanski, states that every permutation on the n-dimensional doubly directed hypercube graph can be routed with edge-disjoint paths. That is, if the permutation σ matches each vertex v to another vertex σ(v), then for each v there exists a path in the hypercube graph from v to σ(v) such that no two paths for two different vertices u and v use the same edge in the same direction.
foaf:depiction
n17:Szymanski_routing.svg
dct:subject
dbc:Conjectures dbc:Network_topology dbc:Unsolved_problems_in_graph_theory
dbo:wikiPageID
25435956
dbo:wikiPageRevisionID
1032095966
dbo:wikiPageWikiLink
dbr:Permutation n9:Szymanski_routing.svg dbr:Hypercube_graph dbc:Conjectures dbc:Network_topology dbr:Shortest_path dbr:Path_(graph_theory) dbr:Directed_graph dbc:Unsolved_problems_in_graph_theory
owl:sameAs
freebase:m.09k4tmh yago-res:Szymanski's_conjecture n16:4vhuG wikidata:Q7665039
dbp:wikiPageUsesTemplate
dbt:Harvs dbt:Citation dbt:Combin-stub dbt:Harv
dbo:thumbnail
n17:Szymanski_routing.svg?width=300
dbo:abstract
In mathematics, Szymanski's conjecture, named after Ted H. Szymanski, states that every permutation on the n-dimensional doubly directed hypercube graph can be routed with edge-disjoint paths. That is, if the permutation σ matches each vertex v to another vertex σ(v), then for each v there exists a path in the hypercube graph from v to σ(v) such that no two paths for two different vertices u and v use the same edge in the same direction. Through computer experiments it has been verified that the conjecture is true for n ≤ 4. Although the conjecture remains open for n ≥ 5, in this case there exist permutations that require the use of paths that are not shortest paths in order to be routed.
prov:wasDerivedFrom
wikipedia-en:Szymanski's_conjecture?oldid=1032095966&ns=0
dbo:wikiPageLength
2094
foaf:isPrimaryTopicOf
wikipedia-en:Szymanski's_conjecture
Subject Item
dbr:List_of_unsolved_problems_in_mathematics
dbo:wikiPageWikiLink
dbr:Szymanski's_conjecture
Subject Item
wikipedia-en:Szymanski's_conjecture
foaf:primaryTopic
dbr:Szymanski's_conjecture