This HTML5 document contains 39 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Geodesics_in_general_relativity
dbo:wikiPageWikiLink
dbr:Synge's_world_function
Subject Item
dbr:Normal_coordinates
dbo:wikiPageWikiLink
dbr:Synge's_world_function
Subject Item
dbr:John_Lighton_Synge
dbo:wikiPageWikiLink
dbr:Synge's_world_function
Subject Item
dbr:Synge's_world_function
rdfs:label
Função mundo de Synge Synge's world function
rdfs:comment
Em relatividade geral, a função mundo de Synge é um exemplo de um bitensor, isto é, uma função tensorial de pares de pontos no espaço-tempo. In general relativity, Synge's world function is a smooth locally defined function of pairs of points in a smooth spacetime with smooth Lorentzian metric . Let be two points in spacetime, and suppose belongs to a convex normal neighborhood of (referred to the Levi-Civita connection associated to ) so that there exists a unique geodesic from to included in , up to the affine parameter . Suppose and . Then Synge's world function is defined as:
dcterms:subject
dbc:General_relativity
dbo:wikiPageID
34265726
dbo:wikiPageRevisionID
1101391532
dbo:wikiPageWikiLink
dbr:Spacetime_interval dbr:Parametrix dbr:John_Lighton_Synge dbr:Lorentzian_metric dbr:Spacetime dbr:Normal_neighborhood dbr:Minkowski_spacetime dbr:Multivalued_function dbr:Geodesic dbr:Levi-Civita_connection dbc:General_relativity dbr:Quantum_field_theory_in_curved_spacetime dbr:Globally_hyperbolic_manifold dbr:General_relativity dbr:Green’s_function
owl:sameAs
freebase:m.0hzp6wz wikidata:Q7662440 n12:4vkEj dbpedia-pt:Função_mundo_de_Synge
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Cite_book dbt:Relativity-stub dbt:Cite_journal
dbo:abstract
In general relativity, Synge's world function is a smooth locally defined function of pairs of points in a smooth spacetime with smooth Lorentzian metric . Let be two points in spacetime, and suppose belongs to a convex normal neighborhood of (referred to the Levi-Civita connection associated to ) so that there exists a unique geodesic from to included in , up to the affine parameter . Suppose and . Then Synge's world function is defined as: where is the tangent vector to the affinely parametrized geodesic . That is, is half the square of the signed geodesic length from to computed along the unique geodesic segment, in , joining the two points. Synge's world function is well-defined, since the integral above is invariant under reparameterization. In particular, for Minkowski spacetime, the Synge's world function simplifies to half the spacetime interval between the two points: it is globally defined and it takes the form Obviously Synge's function can be defined also in Riemannian manifolds and in that case it has non-negative sign. Generally speaking, Synge’s function is only locally defined and an attempt to define an extension to domains larger than convex normal neighborhoods generally leads to a multivalued function since there may be several geodesic segments joining a pair of points in the spacetime. It is however possible to define it in a neighborhood of the diagonal of , though this definition requires some arbitrary choice.Synge's world function (also its extension to a neighborhood of the diagonal of ) appears in particular in a number of theoretical constructions of quantum field theory in curved spacetime. It is the crucial object used to construct a parametrix of Green’s functions of Lorentzian Green hyperbolic 2nd order partial differential equations in a globally hyperbolic manifold, and in the definition of Hadamard Gaussian states. Em relatividade geral, a função mundo de Synge é um exemplo de um bitensor, isto é, uma função tensorial de pares de pontos no espaço-tempo.
prov:wasDerivedFrom
wikipedia-en:Synge's_world_function?oldid=1101391532&ns=0
dbo:wikiPageLength
3677
foaf:isPrimaryTopicOf
wikipedia-en:Synge's_world_function
Subject Item
wikipedia-en:Synge's_world_function
foaf:primaryTopic
dbr:Synge's_world_function