This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Symmetric_hypergraph_theorem
Subject Item
dbr:Symmetric_hypergraph_theorem
rdf:type
yago:Theorem106752293 yago:Abstraction100002137 yago:WikicatTheoremsInGraphTheory yago:Proposition106750804 yago:Message106598915 yago:Statement106722453 yago:Communication100033020
rdfs:label
Symmetric hypergraph theorem
rdfs:comment
The Symmetric hypergraph theorem is a theorem in combinatorics that puts an upper bound on the chromatic number of a graph (or hypergraph in general). The original reference for this paper is unknown at the moment, and has been called folklore.
dct:subject
dbc:Graph_coloring dbc:Theorems_in_graph_theory
dbo:wikiPageID
5514192
dbo:wikiPageRevisionID
1119073196
dbo:wikiPageWikiLink
dbr:Hypergraph dbr:Graph_(discrete_mathematics) dbr:Group_action_(mathematics) dbr:Folklore dbr:Ramsey_theory dbr:Group_(mathematics) dbr:Glossary_of_graph_theory dbr:Graph_coloring dbr:Automorphism_group dbc:Theorems_in_graph_theory dbr:Combinatorics dbc:Graph_coloring dbr:Graph_Ramsey_theory
owl:sameAs
n9:4vbgc wikidata:Q7661308 yago-res:Symmetric_hypergraph_theorem freebase:m.0dqb5m
dbo:abstract
The Symmetric hypergraph theorem is a theorem in combinatorics that puts an upper bound on the chromatic number of a graph (or hypergraph in general). The original reference for this paper is unknown at the moment, and has been called folklore.
gold:hypernym
dbr:Theorem
prov:wasDerivedFrom
wikipedia-en:Symmetric_hypergraph_theorem?oldid=1119073196&ns=0
dbo:wikiPageLength
1674
foaf:isPrimaryTopicOf
wikipedia-en:Symmetric_hypergraph_theorem
Subject Item
wikipedia-en:Symmetric_hypergraph_theorem
foaf:primaryTopic
dbr:Symmetric_hypergraph_theorem