This HTML5 document contains 20 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Nonparametric_statistics
dbo:wikiPageWikiLink
dbr:Squared_ranks_test
Subject Item
dbr:Squared_ranks_test
rdfs:label
Squared ranks test
rdfs:comment
In statistics, the Conover squared ranks test is a non-parametric version of the parametric Levene's test for equality of variance. Conover's squared ranks test is the only equality of variance test that appears to be non-parametric. Other tests of significance of difference of data dispersion are parametric (i.e., are difference of variance tests). The squared ranks test is arguably a test of significance of difference of data dispersion not variance per se. This becomes important, for example, when the Levene's test fails to satisfy the rather generous conditions for normality associated with that test and is a default alternative under those conditions for certain statistical software programs like the VarianceEquivalenceTest routine in Mathematica. In addition to Levene's test, other
dcterms:subject
dbc:Analysis_of_variance dbc:Statistical_tests
dbo:wikiPageID
51115755
dbo:wikiPageRevisionID
982021396
dbo:wikiPageWikiLink
dbc:Analysis_of_variance dbr:Levene's_test dbc:Statistical_tests
owl:sameAs
wikidata:Q28455288 yago-res:Squared_ranks_test n10:2eSTx
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Statistics-stub
dbo:abstract
In statistics, the Conover squared ranks test is a non-parametric version of the parametric Levene's test for equality of variance. Conover's squared ranks test is the only equality of variance test that appears to be non-parametric. Other tests of significance of difference of data dispersion are parametric (i.e., are difference of variance tests). The squared ranks test is arguably a test of significance of difference of data dispersion not variance per se. This becomes important, for example, when the Levene's test fails to satisfy the rather generous conditions for normality associated with that test and is a default alternative under those conditions for certain statistical software programs like the VarianceEquivalenceTest routine in Mathematica. In addition to Levene's test, other parametric tests for equality of variance include the Bartlett, Brown-Forsythe, and Fisher Ratio tests.
prov:wasDerivedFrom
wikipedia-en:Squared_ranks_test?oldid=982021396&ns=0
dbo:wikiPageLength
1926
foaf:isPrimaryTopicOf
wikipedia-en:Squared_ranks_test
Subject Item
wikipedia-en:Squared_ranks_test
foaf:primaryTopic
dbr:Squared_ranks_test