This HTML5 document contains 98 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10http://dbpedia.org/resource/File:
n13http://www.volker-koch.com/diss/
n24https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n17http://shogun-toolbox.org/
dbpedia-ethttp://et.dbpedia.org/resource/
n9https://web.archive.org/web/20061128090454/http:/visl.technion.ac.il/demos/bss/
n23http://www.cis.hut.fi/projects/ica/
n14http://commons.wikimedia.org/wiki/Special:FilePath/
n22http://apps.dtic.mil/dtic/tr/fulltext/u2/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
n18https://www.python.org/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Empirical_orthogonal_functions
dbo:wikiPageWikiLink
dbr:Signal_separation
Subject Item
dbr:Blind_source_separation
dbo:wikiPageWikiLink
dbr:Signal_separation
dbo:wikiPageRedirects
dbr:Signal_separation
Subject Item
dbr:Source_separation
dbo:wikiPageWikiLink
dbr:Signal_separation
Subject Item
dbr:Daniel_Levitin
dbo:wikiPageWikiLink
dbr:Signal_separation
Subject Item
dbr:Real-time_analyzer
dbo:wikiPageWikiLink
dbr:Signal_separation
Subject Item
dbr:Blind_signal_separation
dbo:wikiPageWikiLink
dbr:Signal_separation
dbo:wikiPageRedirects
dbr:Signal_separation
Subject Item
dbr:Auditory_scene_analysis
dbo:wikiPageWikiLink
dbr:Signal_separation
Subject Item
dbr:Shoko_Araki
dbo:wikiPageWikiLink
dbr:Signal_separation
Subject Item
dbr:Signal_separation
rdf:type
owl:Thing
rdfs:label
Signal separation
rdfs:comment
Source separation, blind signal separation (BSS) or blind source separation, is the separation of a set of source signals from a set of mixed signals, without the aid of information (or with very little information) about the source signals or the mixing process. It is most commonly applied in digital signal processing and involves the analysis of mixtures of signals; the objective is to recover the original component signals from a mixture signal. The classical example of a source separation problem is the cocktail party problem, where a number of people are talking simultaneously in a room (for example, at a cocktail party), and a listener is trying to follow one of the discussions. The human brain can handle this sort of auditory source separation problem, but it is a difficult problem
rdfs:seeAlso
dbr:Cocktail_party_effect
foaf:depiction
n14:BSS-example.png n14:BSS-flow-chart.png n14:Polyphonic_note_separation_&_manipulation.jpg
dcterms:subject
dbc:Speech_processing dbc:Digital_signal_processing
dbo:wikiPageID
28804
dbo:wikiPageRevisionID
1121170449
dbo:wikiPageWikiLink
dbr:Dependent_component_analysis dbr:Sonic_artifact dbr:Electromagnetic_field dbr:Cocktail_party_problem dbr:Information_theory dbr:Magnetic_field dbr:Underdetermined_system dbr:Joint_Approximation_Diagonalization_of_Eigen-matrices dbr:Adaptive_filtering n10:BSS-example.png n10:BSS-flow-chart.png dbr:Common_spatial_pattern dbr:Celemony_Software dbr:Low-complexity_coding_and_decoding dbr:Speech_segmentation dbr:Tensors dbr:Correlation dbr:Independent_component_analysis n10:Polyphonic_note_separation_&_manipulation.jpg dbr:Magnetoencephalography dbr:Signal_(information_theory) dbr:Electroencephalogram dbr:Principal_components_analysis dbr:Auditory_scene_analysis dbr:Independent_components_analysis dbr:Factorial_code dbr:Signal_processing dbr:Deconvolution dbr:Non-negative_matrix_factorization dbr:Nonnegative_matrix_factorization dbr:Computational_auditory_scene_analysis dbr:Medical_imaging dbr:Stationary_subspace_analysis dbr:Singular_value_decomposition dbc:Speech_processing dbr:Segmentation_(image_processing) dbr:Multidimensional_data dbr:Independence_(probability) dbr:Colin_Cherry dbr:Digital_signal_processing dbr:Digital_image dbr:Infomax_principle dbc:Digital_signal_processing dbr:Basis_(linear_algebra) dbr:Cocktail_party_effect dbr:Sparsity dbr:Cocktail_party dbr:Music
dbo:wikiPageExternalLink
n9: n13: n17: n18: n22:a455940.pdf n23:
owl:sameAs
dbpedia-et:Signaali_eraldus wikidata:Q17105967 n24:fYyV
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:TOC_right dbt:Commons_category dbt:Authority_control dbt:Short_description dbt:See_also dbt:Other_uses
dbo:thumbnail
n14:Polyphonic_note_separation_&_manipulation.jpg?width=300
dbo:wikiPageInterLanguageLink
dbpedia-de:Cocktail-Party-Effekt
dbo:abstract
Source separation, blind signal separation (BSS) or blind source separation, is the separation of a set of source signals from a set of mixed signals, without the aid of information (or with very little information) about the source signals or the mixing process. It is most commonly applied in digital signal processing and involves the analysis of mixtures of signals; the objective is to recover the original component signals from a mixture signal. The classical example of a source separation problem is the cocktail party problem, where a number of people are talking simultaneously in a room (for example, at a cocktail party), and a listener is trying to follow one of the discussions. The human brain can handle this sort of auditory source separation problem, but it is a difficult problem in digital signal processing. This problem is in general highly underdetermined, but useful solutions can be derived under a surprising variety of conditions. Much of the early literature in this field focuses on the separation of temporal signals such as audio. However, blind signal separation is now routinely performed on multidimensional data, such as images and tensors, which may involve no time dimension whatsoever. Several approaches have been proposed for the solution of this problem but development is currently still very much in progress. Some of the more successful approaches are principal components analysis and independent component analysis, which work well when there are no delays or echoes present; that is, the problem is simplified a great deal. The field of computational auditory scene analysis attempts to achieve auditory source separation using an approach that is based on human hearing. The human brain must also solve this problem in real time. In human perception this ability is commonly referred to as auditory scene analysis or the cocktail party effect.
prov:wasDerivedFrom
wikipedia-en:Signal_separation?oldid=1121170449&ns=0
dbo:wikiPageLength
10178
foaf:isPrimaryTopicOf
wikipedia-en:Signal_separation
Subject Item
dbr:Self-modeling_mixture_analysis
dbo:wikiPageWikiLink
dbr:Signal_separation
dbo:wikiPageRedirects
dbr:Signal_separation
Subject Item
dbr:Multivariate_Curve_Resolution
dbo:wikiPageWikiLink
dbr:Signal_separation
dbo:wikiPageRedirects
dbr:Signal_separation
Subject Item
dbr:Multivariate_curve_resolution
dbo:wikiPageWikiLink
dbr:Signal_separation
dbo:wikiPageRedirects
dbr:Signal_separation
Subject Item
wikipedia-en:Signal_separation
foaf:primaryTopic
dbr:Signal_separation