This HTML5 document contains 48 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18http://momalab.org/index.php/
n12http://dbpedia.org/resource/File:
n17https://global.dbpedia.org/id/
n4https://poggiolab.unibas.ch/research/Scanning%20Quantum%20Dot%20Microscopy/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n11https://www.fz-juelich.de/pgi/pgi-3/EN/Groups/LTSTM/Research/
n5http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Scanning_Quantum_Dot_Microscopy
dbo:wikiPageWikiLink
dbr:Scanning_quantum_dot_microscopy
dbo:wikiPageRedirects
dbr:Scanning_quantum_dot_microscopy
Subject Item
dbr:Kelvin_probe_force_microscope
dbo:wikiPageWikiLink
dbr:Scanning_quantum_dot_microscopy
Subject Item
dbr:Quantum_dot
dbo:wikiPageWikiLink
dbr:Scanning_quantum_dot_microscopy
Subject Item
dbr:Atomic_force_microscopy
dbo:wikiPageWikiLink
dbr:Scanning_quantum_dot_microscopy
Subject Item
dbr:Scanning_probe_microscopy
dbo:wikiPageWikiLink
dbr:Scanning_quantum_dot_microscopy
Subject Item
dbr:Scanning_quantum_dot_microscopy
rdfs:label
Scanning quantum dot microscopy
rdfs:comment
Scanning quantum dot microscopy (SQDM) is a scanning probe microscopy (SPM) that is used to image nanoscale electric potential distributions on surfaces. The method quantifies surface potential variations via their influence on the potential of a quantum dot (QD) attached to the apex of the scanned probe. SQDM allows, for example, the quantification of surface dipoles originating from individual adatoms, molecules, or nanostructures. This gives insights into surface and interface mechanisms such as reconstruction or relaxation, mechanical distortion, charge transfer and chemical interaction. Measuring electric potential distributions is also relevant for characterizing organic and inorganic semiconductor devices which feature electric dipole layers at the relevant interfaces. The probe to
foaf:depiction
n5:SQDM_1.jpg
dct:subject
dbc:Scanning_probe_microscopy
dbo:wikiPageID
62383372
dbo:wikiPageRevisionID
1101076374
dbo:wikiPageWikiLink
dbr:Electric_potential dbr:P–n_junction dbr:Kelvin_probe_force_microscope dbr:Chemisorption dbr:Biomolecule dbr:Nanostructure dbr:Laplace's_equation dbr:Green's_function dbr:Electrostatic_force_microscope dbr:Charge-transfer_complex dbr:Non-contact_atomic_force_microscopy dbr:Semiconductor_device dbr:Stark_effect n12:SQDM_1.jpg dbr:Molecule dbr:Electric_field dbr:Quantum_dot dbr:Boundary_value_problem dbr:Scanning_probe_microscopy dbr:Dirichlet_boundary_condition dbc:Scanning_probe_microscopy dbr:Surface_reconstruction dbr:Work_function dbr:Adatom
dbo:wikiPageExternalLink
n4: n11:SQDM.html n18:%3Faction=devices
owl:sameAs
wikidata:Q85799894 n17:C1mDd
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:thumbnail
n5:SQDM_1.jpg?width=300
dbo:abstract
Scanning quantum dot microscopy (SQDM) is a scanning probe microscopy (SPM) that is used to image nanoscale electric potential distributions on surfaces. The method quantifies surface potential variations via their influence on the potential of a quantum dot (QD) attached to the apex of the scanned probe. SQDM allows, for example, the quantification of surface dipoles originating from individual adatoms, molecules, or nanostructures. This gives insights into surface and interface mechanisms such as reconstruction or relaxation, mechanical distortion, charge transfer and chemical interaction. Measuring electric potential distributions is also relevant for characterizing organic and inorganic semiconductor devices which feature electric dipole layers at the relevant interfaces. The probe to surface distance in SQDM ranges from 2 nm to 10 nm and therefore allows imaging on non-planar surfaces or, e.g., of biomolecules with a distinct 3D structure. Related imaging techniques are Kelvin Probe Force Microscopy (KPFM) and Electrostatic Force Microscopy (EFM).
prov:wasDerivedFrom
wikipedia-en:Scanning_quantum_dot_microscopy?oldid=1101076374&ns=0
dbo:wikiPageLength
12083
foaf:isPrimaryTopicOf
wikipedia-en:Scanning_quantum_dot_microscopy
Subject Item
wikipedia-en:Scanning_quantum_dot_microscopy
foaf:primaryTopic
dbr:Scanning_quantum_dot_microscopy