This HTML5 document contains 33 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18http://repository.cmu.edu/compsci/
n6https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Sampling_in_order
rdf:type
yago:Method105660268 yago:PsychologicalFeature100023100 yago:Know-how105616786 yago:Ability105616246 yago:WikicatMonteCarloMethods yago:Cognition100023271 yago:Abstraction100002137
rdfs:label
Sampling in order
rdfs:comment
In statistics, some Monte Carlo methods require independent observations in a sample to be drawn from a one-dimensional distribution in sorted order. In other words, all n order statistics are needed from the n observations in a sample. The naive method performs a sort and takes O(n log n) time. There are also O(n) algorithms which are better suited for large n. The special case of drawing n sorted observations from the uniform distribution on [0,1] is equivalent to drawing from the uniform distribution on an n-dimensional simplex; this task is a part of sequential importance resampling.
dcterms:subject
dbc:Monte_Carlo_methods
dbo:wikiPageID
41559308
dbo:wikiPageRevisionID
786184657
dbo:wikiPageWikiLink
dbr:Uniform_distribution_(continuous) dbr:Statistics dbr:Simplex dbr:Monte_Carlo_method dbr:Journal_of_the_Royal_Statistical_Society dbc:Monte_Carlo_methods dbr:Sequential_importance_resampling dbr:Sorting_algorithm dbr:Order_statistic
dbo:wikiPageExternalLink
n18:2450
owl:sameAs
n6:fgTq wikidata:Q17084099 freebase:m.0_1g5rf yago-res:Sampling_in_order
dbp:wikiPageUsesTemplate
dbt:Statistics-stub dbt:Citation
dbo:abstract
In statistics, some Monte Carlo methods require independent observations in a sample to be drawn from a one-dimensional distribution in sorted order. In other words, all n order statistics are needed from the n observations in a sample. The naive method performs a sort and takes O(n log n) time. There are also O(n) algorithms which are better suited for large n. The special case of drawing n sorted observations from the uniform distribution on [0,1] is equivalent to drawing from the uniform distribution on an n-dimensional simplex; this task is a part of sequential importance resampling.
prov:wasDerivedFrom
wikipedia-en:Sampling_in_order?oldid=786184657&ns=0
dbo:wikiPageLength
1825
foaf:isPrimaryTopicOf
wikipedia-en:Sampling_in_order
Subject Item
wikipedia-en:Sampling_in_order
foaf:primaryTopic
dbr:Sampling_in_order