This HTML5 document contains 33 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hilbert's_seventeenth_problem
dbo:wikiPageWikiLink
dbr:SOS-convexity
Subject Item
dbr:Polynomial_SOS
dbo:wikiPageWikiLink
dbr:SOS-convexity
Subject Item
dbr:SOS-convexity
rdfs:label
SOS-convexity
rdfs:comment
A multivariate polynomial is SOS-convex (or sum of squares convex) if its Hessian matrix H can be factored as H(x) = ST(x)S(x) where S is a matrix (possibly rectangular) which entries are polynomials in x. In other words, the Hessian matrix is a SOS matrix polynomial. An equivalent definition is that the form defined as g(x,y) = yTH(x)y is a sum of squares of forms.
dcterms:subject
dbc:Real_algebraic_geometry dbc:Convex_analysis dbc:Homogeneous_polynomials
dbo:wikiPageID
64465650
dbo:wikiPageRevisionID
1117679243
dbo:wikiPageWikiLink
dbr:Semidefinite_programming dbr:Hilbert's_seventeenth_problem dbr:Non-constructive dbr:Polynomial_SOS dbc:Homogeneous_polynomials dbr:Multivariate_polynomial dbr:Pablo_Parrilo dbr:Amir_Ali_Ahmadi dbc:Convex_analysis dbr:Hessian_matrix dbc:Real_algebraic_geometry dbr:Sum-of-squares_optimization
owl:sameAs
n13:DpGQq wikidata:Q97179825
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Technical dbt:Citation_needed
dbo:abstract
A multivariate polynomial is SOS-convex (or sum of squares convex) if its Hessian matrix H can be factored as H(x) = ST(x)S(x) where S is a matrix (possibly rectangular) which entries are polynomials in x. In other words, the Hessian matrix is a SOS matrix polynomial. An equivalent definition is that the form defined as g(x,y) = yTH(x)y is a sum of squares of forms.
prov:wasDerivedFrom
wikipedia-en:SOS-convexity?oldid=1117679243&ns=0
dbo:wikiPageLength
4811
foaf:isPrimaryTopicOf
wikipedia-en:SOS-convexity
Subject Item
dbr:Sos-convex
dbo:wikiPageWikiLink
dbr:SOS-convexity
dbo:wikiPageRedirects
dbr:SOS-convexity
Subject Item
wikipedia-en:SOS-convexity
foaf:primaryTopic
dbr:SOS-convexity