This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13http://tools.ietf.org/html/
n6https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n20https://www.atsc.org/wp-content/uploads/2016/01/
freebasehttp://rdf.freebase.com/ns/
n10https://datatracker.ietf.org/ipr/search/
n7http://
n16http://www.dvb-h-online.org/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://ieeexplore.ieee.org/iel5/18/34354/
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
n23http://www.3gpp.org/ftp/Specs/html-info/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Amin_Shokrollahi
dbo:wikiPageWikiLink
dbr:Raptor_code
Subject Item
dbr:Error_correction_code
dbo:wikiPageWikiLink
dbr:Raptor_code
Subject Item
dbr:École_Polytechnique_Fédérale_de_Lausanne
dbo:wikiPageWikiLink
dbr:Raptor_code
Subject Item
dbr:Tornado_code
dbo:wikiPageWikiLink
dbr:Raptor_code
Subject Item
dbr:Fountain_code
dbo:wikiPageWikiLink
dbr:Raptor_code
Subject Item
dbr:Luby_transform_code
dbo:wikiPageWikiLink
dbr:Raptor_code
Subject Item
dbr:Raptor
dbo:wikiPageWikiLink
dbr:Raptor_code
dbo:wikiPageDisambiguates
dbr:Raptor_code
Subject Item
dbr:Raptor_code
rdfs:label
Raptor code
rdfs:comment
In computer science, Raptor codes (rapid tornado; see Tornado codes) are the first known class of fountain codes with linear time encoding and decoding. They were invented by Amin Shokrollahi in 2000/2001 and were first published in 2004 as an extended abstract. Raptor codes are a significant theoretical and practical improvement over LT codes, which were the first practical class of fountain codes. Online codes are an example of a non-systematic fountain code.
dcterms:subject
dbc:Coding_theory
dbo:wikiPageID
3340191
dbo:wikiPageRevisionID
1118208214
dbo:wikiPageWikiLink
dbr:Dynamic_Adaptive_Streaming_over_HTTP dbr:Tornado_code dbr:Tornado_codes dbr:List_of_ATSC_standards dbr:ATSC_3.0 dbr:Amin_Shokrollahi dbr:Mobile_cellular_wireless dbr:Online_codes dbr:Erasure_code dbr:3rd_Generation_Partnership_Project dbr:IETF dbr:DVB-H_standard dbr:LT_code dbr:LT_codes dbr:Computer_science dbr:Binary_Gray_sequence dbr:Hamming_code dbr:Fountain_codes dbr:XOR dbc:Coding_theory dbr:Gaussian_elimination dbr:Low_density_parity_check_code
dbo:wikiPageExternalLink
n7:www.dvb.org n10:%3Foption=rfc_search&rfc_search=5053 n10:%3Foption=rfc_search&rfc_search=6330 n13:rfc5053 n13:rfc6330 n16:technology.htm n19:01638543.pdf%3Fisnumber=34354&prod=JNL&arnumber=1638543&arSt=2551&ared=2567&arAuthor=Shokrollahi%2C+A. n20:A331S33-174r6-Signaling-Delivery-Sync-FEC.pdf n23:26346.htm n7:www.3gpp.org
owl:sameAs
n6:4tf1z freebase:m.096nr3 wikidata:Q7294373
dbp:wikiPageUsesTemplate
dbt:Format_footnotes dbt:Reflist dbt:About dbt:Citation_style
dbo:abstract
In computer science, Raptor codes (rapid tornado; see Tornado codes) are the first known class of fountain codes with linear time encoding and decoding. They were invented by Amin Shokrollahi in 2000/2001 and were first published in 2004 as an extended abstract. Raptor codes are a significant theoretical and practical improvement over LT codes, which were the first practical class of fountain codes. Raptor codes, as with fountain codes in general, encode a given source block of data consisting of a number k of equal size source symbols into a potentially limitless sequence of encoding symbols such that reception of any k or more encoding symbols allows the source block to be recovered with some non-zero probability. The probability that the source block can be recovered increases with the number of encoding symbols received above k becoming very close to 1, once the number of received encoding symbols is only very slightly larger than k. For example, with the latest generation of Raptor codes, the RaptorQ codes, the chance of decoding failure when k encoding symbols have been received is less than 1%, and the chance of decoding failure when k+2 encoding symbols have been received is less than one in a million. (See Recovery probability and overhead section below for more discussion on this.) A symbol can be any size, from a single byte to hundreds or thousands of bytes. Raptor codes may be systematic or non-systematic. In the systematic case, the symbols of the original source block, i.e. the source symbols, are included within the set of encoding symbols. Some examples of a systematic Raptor code is the use by the 3rd Generation Partnership Project in mobile cellular wireless broadcasting and multicasting, and also by DVB-H standards for IP datacast to handheld devices (see external links). The Raptor codes used in these standards is also defined in IETF RFC 5053. Online codes are an example of a non-systematic fountain code.
gold:hypernym
dbr:Class
prov:wasDerivedFrom
wikipedia-en:Raptor_code?oldid=1118208214&ns=0
dbo:wikiPageLength
9587
foaf:isPrimaryTopicOf
wikipedia-en:Raptor_code
Subject Item
dbr:Raptor_codes
dbo:wikiPageWikiLink
dbr:Raptor_code
dbo:wikiPageRedirects
dbr:Raptor_code
Subject Item
wikipedia-en:Raptor_code
foaf:primaryTopic
dbr:Raptor_code