This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
n8http://www.csl.illinois.edu/allerton/archives/allerton06/PDFs/papers/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Quantum_convolutional_code
rdfs:label
Quantum convolutional code
rdfs:comment
Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.
dcterms:subject
dbc:Quantum_information_science
dbo:wikiPageID
25573020
dbo:wikiPageRevisionID
966953736
dbo:wikiPageWikiLink
dbr:Quantum_communication dbr:Convolutional_code dbr:Tensor_product dbr:Quantum_entanglement dbr:Pauli_matrices dbr:Quantum_computing dbr:Qubit dbr:Shift_register dbc:Quantum_information_science dbr:Hilbert_space dbr:Entanglement-assisted_stabilizer_code dbr:Countably_infinite dbr:Stabilizer_code
dbo:wikiPageExternalLink
n8:0285.pdf
owl:sameAs
freebase:m.09rwfrh wikidata:Q7269025 n15:4tQ2i
dbp:wikiPageUsesTemplate
dbt:No_footnotes dbt:Quantum_computing dbt:Cite_book dbt:Refbegin dbt:Cite_journal dbt:Dead_link
dbp:bot
InternetArchiveBot
dbp:date
July 2016
dbp:fixAttempted
yes
dbo:abstract
Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity. Quantum convolutional coding theory offers a different paradigm for coding quantum information. The convolutional structure is useful for a quantum communication scenario where a sender possesses a stream of qubits to send to a receiver. The encoding circuit for a quantum convolutional code has a much lower complexity than an encoding circuit needed for a large block code. It also has a repetitive pattern so that the same physical devices or the same routines can manipulate the stream of quantum information. Quantum convolutional stabilizer codes borrow heavily from the structure of their classical counterparts. Quantum convolutional codes are similar because some of the qubits feed back into a repeated encoding unitary and give the code a memory structure like that of a classical convolutional code. The quantum codes feature online encoding and decoding of qubits. This feature gives quantum convolutional codes both their low encoding and decoding complexity and their ability to correct a larger set of errors than a block code with similar parameters.
prov:wasDerivedFrom
wikipedia-en:Quantum_convolutional_code?oldid=966953736&ns=0
dbo:wikiPageLength
12866
foaf:isPrimaryTopicOf
wikipedia-en:Quantum_convolutional_code
Subject Item
dbr:Convolutional_code
dbo:wikiPageWikiLink
dbr:Quantum_convolutional_code
Subject Item
wikipedia-en:Quantum_convolutional_code
foaf:primaryTopic
dbr:Quantum_convolutional_code