This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Beta_distribution
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:Inverse_transform_sampling
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:Quantile_function
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:Maximum_spacing_estimation
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:Copula_(probability_theory)
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:Pit
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
dbo:wikiPageDisambiguates
dbr:Probability_integral_transform
Subject Item
dbr:Probability_integral_transform
rdfs:label
機率積分轉換 Trasformazione integrale di probabilità Probability integral transform
rdfs:comment
In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples. In statistica, la trasformazione integrale di probabilità si riferisce al risultato che converte valori descritti come variabili casuali di una qualsivoglia distribuzione continua in variabili casuali aventi una distribuzione uniforme. Questo è sempre vero, a patto che la distribuzione utilizzata come punto di partenza sia la vera distribuzione della variabile casuale; se si è operato un fit di distribuzione ai valori, il risultato sarà approssimativamente vero per campioni abbastanza grandi. 在概率論中,機率積分轉換 (Probability integral transform;或稱萬流齊一、萬流歸宗,Universality of the Uniform) 說明若任意一個連續的隨機变量 (c.r.v),當已知其累積分布函數 (cdf)為Fx(x),可透過隨機变量轉換令Y=Fx(X),則可轉換為一 Y~U(0,1) 的均勻分佈。換句話說,若設 Y 是 X 的一個隨機变量轉換,而恰好在給定 Y 是其累積分布函數 (cdf) Fx(X) 本身時,可以將此隨機变量轉化為一均勻 (0,1) 分佈。
dct:subject
dbc:Theory_of_probability_distributions
dbo:wikiPageID
8405353
dbo:wikiPageRevisionID
1087652419
dbo:wikiPageWikiLink
dbr:Data_analysis dbr:Continuous_uniform_distribution dbr:Exponential_distribution dbr:Standard_uniform_distribution dbr:Pushforward_measure dbr:P–P_plot dbr:Random_variable dbr:Cumulative_distribution_function dbc:Theory_of_probability_distributions dbr:Joint_probability_distribution dbr:Kolmogorov–Smirnov_test dbr:Inverse_transform_sampling dbr:Continuous_distribution dbr:Error_function dbr:Copula_(statistics) dbr:Probability_theory
owl:sameAs
wikidata:Q3997735 dbpedia-zh:機率積分轉換 freebase:m.05pd956 dbpedia-it:Trasformazione_integrale_di_probabilità n14:3hJZi
dbo:abstract
In probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples. The result is sometimes modified or extended so that the result of the transformation is a standard distribution other than the uniform distribution, such as the exponential distribution. 在概率論中,機率積分轉換 (Probability integral transform;或稱萬流齊一、萬流歸宗,Universality of the Uniform) 說明若任意一個連續的隨機变量 (c.r.v),當已知其累積分布函數 (cdf)為Fx(x),可透過隨機变量轉換令Y=Fx(X),則可轉換為一 Y~U(0,1) 的均勻分佈。換句話說,若設 Y 是 X 的一個隨機变量轉換,而恰好在給定 Y 是其累積分布函數 (cdf) Fx(X) 本身時,可以將此隨機变量轉化為一均勻 (0,1) 分佈。 In statistica, la trasformazione integrale di probabilità si riferisce al risultato che converte valori descritti come variabili casuali di una qualsivoglia distribuzione continua in variabili casuali aventi una distribuzione uniforme. Questo è sempre vero, a patto che la distribuzione utilizzata come punto di partenza sia la vera distribuzione della variabile casuale; se si è operato un fit di distribuzione ai valori, il risultato sarà approssimativamente vero per campioni abbastanza grandi.
prov:wasDerivedFrom
wikipedia-en:Probability_integral_transform?oldid=1087652419&ns=0
dbo:wikiPageLength
4911
foaf:isPrimaryTopicOf
wikipedia-en:Probability_integral_transform
Subject Item
dbr:Data_transformation_(statistics)
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:Normal_distribution
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Probability_integral_transform
Subject Item
wikipedia-en:Probability_integral_transform
foaf:primaryTopic
dbr:Probability_integral_transform