This HTML5 document contains 22 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:PMM
dbo:wikiPageWikiLink
dbr:Predictive_mean_matching
dbo:wikiPageDisambiguates
dbr:Predictive_mean_matching
Subject Item
dbr:Predictive_mean_matching
rdfs:label
Predictive mean matching
rdfs:comment
Predictive mean matching (PMM) is a widely used statistical imputation method for missing values, first proposed by Donald B. Rubin in 1986 and R. J. A. Little in 1988. It aims to reduce the bias introduced in a dataset through imputation, by drawing real values sampled from the data. This is achieved by building a small subset of observations where the outcome variable matches the outcome of the observations with missing values.
dcterms:subject
dbc:Predictive_analytics dbc:Missing_data
dbo:wikiPageID
61181155
dbo:wikiPageRevisionID
1052544614
dbo:wikiPageWikiLink
dbr:Imputation_(statistics) dbc:Missing_data dbr:Heteroscedasticity dbc:Predictive_analytics dbr:Bias
owl:sameAs
n13:9rw4v wikidata:Q65052845
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Machine_learning_bar
dbo:abstract
Predictive mean matching (PMM) is a widely used statistical imputation method for missing values, first proposed by Donald B. Rubin in 1986 and R. J. A. Little in 1988. It aims to reduce the bias introduced in a dataset through imputation, by drawing real values sampled from the data. This is achieved by building a small subset of observations where the outcome variable matches the outcome of the observations with missing values. Compared to other imputation methods, it usually imputes less implausible values (e.g. negative incomes) and takes heteroscedastic data into account more appropriately.
prov:wasDerivedFrom
wikipedia-en:Predictive_mean_matching?oldid=1052544614&ns=0
dbo:wikiPageLength
2287
foaf:isPrimaryTopicOf
wikipedia-en:Predictive_mean_matching
Subject Item
wikipedia-en:Predictive_mean_matching
foaf:primaryTopic
dbr:Predictive_mean_matching