This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://books.google.com/
n14https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n18http://en.wiktionary.org/wiki/
n11https://arxiv.org/abs/gr-qc/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_contributors_to_general_relativity
dbo:wikiPageWikiLink
dbr:Peeling_theorem
Subject Item
dbr:Peeling_theorem
rdf:type
yago:WikicatTheoremsInMathematicalPhysics yago:Statement106722453 yago:Communication100033020 yago:Message106598915 yago:Theorem106752293 yago:Abstraction100002137 yago:Proposition106750804
rdfs:label
Peeling theorem
rdfs:comment
In general relativity, the peeling theorem describes the asymptotic behavior of the Weyl tensor as one goes to null infinity. Let be a null geodesic in a spacetime from a point p to null infinity, with affine parameter . Then the theorem states that, as tends to infinity: where is the Weyl tensor, and we used the abstract index notation. Moreover, in the Petrov classification, is type N, is type III, is type II (or II-II) and is type I.
dcterms:subject
dbc:Theorems_in_general_relativity dbc:General_relativity
dbo:wikiPageID
34253455
dbo:wikiPageRevisionID
1099201055
dbo:wikiPageWikiLink
dbr:Abstract_index_notation dbr:Petrov_classification dbr:General_relativity dbr:Weyl_tensor dbr:Affine_parameter dbr:Null_geodesic dbc:General_relativity dbr:General_Relativity_(book) dbr:Spacetime dbc:Theorems_in_general_relativity
dbo:wikiPageExternalLink
n11:0505026 n16:books%3Fid=YP0-AAAAIAAJ&q=Peeling+theorem&dq=Peeling+theorem&hl=en&sa=X&ei=tkwBT9ugBqLQmAXj7fW_Dw&redir_esc=y n18:null_infinity n16:books%3Fid=xIYpAQAAMAAJ&q=Peeling+theorem&dq=Peeling+theorem&hl=en&sa=X&ei=tkwBT9ugBqLQmAXj7fW_Dw&redir_esc=y n16:books%3Fid=5xYvAAAAIAAJ&q=Peeling+theorem&dq=Peeling+theorem&hl=en&sa=X&ei=tkwBT9ugBqLQmAXj7fW_Dw&redir_esc=y
owl:sameAs
yago-res:Peeling_theorem n14:4tKKD wikidata:Q7160302 freebase:m.0hzs3jy
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Relativity-stub dbt:Differential-geometry-stub dbt:Math-physics-stub
dbo:abstract
In general relativity, the peeling theorem describes the asymptotic behavior of the Weyl tensor as one goes to null infinity. Let be a null geodesic in a spacetime from a point p to null infinity, with affine parameter . Then the theorem states that, as tends to infinity: where is the Weyl tensor, and we used the abstract index notation. Moreover, in the Petrov classification, is type N, is type III, is type II (or II-II) and is type I.
prov:wasDerivedFrom
wikipedia-en:Peeling_theorem?oldid=1099201055&ns=0
dbo:wikiPageLength
1735
foaf:isPrimaryTopicOf
wikipedia-en:Peeling_theorem
Subject Item
dbr:Timeline_of_gravitational_physics_and_relativity
dbo:wikiPageWikiLink
dbr:Peeling_theorem
Subject Item
dbr:Petrov_classification
dbo:wikiPageWikiLink
dbr:Peeling_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Peeling_theorem
Subject Item
dbr:Weyl_tensor
dbo:wikiPageWikiLink
dbr:Peeling_theorem
Subject Item
wikipedia-en:Peeling_theorem
foaf:primaryTopic
dbr:Peeling_theorem