This HTML5 document contains 58 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Integration_along_fibers
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Thom_space
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Stiefel–Whitney_class
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Orientation_(vector_space)
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Orientation_of_a_vector_bundle
rdfs:label
Orientation of a vector bundle
rdfs:comment
In mathematics, an orientation of a real vector bundle is a generalization of an orientation of a vector space; thus, given a real vector bundle π: E →B, an orientation of E means: for each fiber Ex, there is an orientation of the vector space Ex and one demands that each trivialization map (which is a bundle map) If E is a real vector bundle of rank n, then a choice of metric on E amounts to a reduction of the structure group to the orthogonal group O(n). In that situation, an orientation of E amounts to a reduction from O(n) to the special orthogonal group SO(n).
dcterms:subject
dbc:Orientation_(geometry) dbc:Analytic_geometry dbc:Linear_algebra
dbo:wikiPageID
44844703
dbo:wikiPageRevisionID
1073294835
dbo:wikiPageWikiLink
dbr:Vector_bundle dbr:Orthogonal_group dbr:Reduced_cohomology dbr:Gysin_sequence dbc:Analytic_geometry dbr:Orientation_bundle dbc:Linear_algebra dbr:Special_orthogonal_group dbr:Thom_space dbr:Grassmannian dbr:Complex_vector_bundle dbc:Orientation_(geometry) dbr:Frame_bundle dbr:Orientation_sheaf dbr:Orientation_of_a_manifold dbr:General_linear_group dbr:Orientation_of_a_vector_space dbr:Thom_isomorphism dbr:Standard_orientation dbr:Determinant_bundle dbr:Unit_sphere_bundle dbr:Euler_class dbr:Integration_along_the_fiber
owl:sameAs
n13:sVdu freebase:m.012htty1 wikidata:Q19598250
dbp:wikiPageUsesTemplate
dbt:Main dbt:Citation_needed dbt:Citation dbt:Short_description
dbo:abstract
In mathematics, an orientation of a real vector bundle is a generalization of an orientation of a vector space; thus, given a real vector bundle π: E →B, an orientation of E means: for each fiber Ex, there is an orientation of the vector space Ex and one demands that each trivialization map (which is a bundle map) is fiberwise orientation-preserving, where Rn is given the standard orientation. In more concise terms, this says that the structure group of the frame bundle of E, which is the real general linear group GLn(R), can be reduced to the subgroup consisting of those with positive determinant. If E is a real vector bundle of rank n, then a choice of metric on E amounts to a reduction of the structure group to the orthogonal group O(n). In that situation, an orientation of E amounts to a reduction from O(n) to the special orthogonal group SO(n). A vector bundle together with an orientation is called an oriented bundle. A vector bundle that can be given an orientation is called an orientable vector bundle. The basic invariant of an oriented bundle is the Euler class. The multiplication (that is, cup product) by the Euler class of an oriented bundle gives rise to a Gysin sequence.
prov:wasDerivedFrom
wikipedia-en:Orientation_of_a_vector_bundle?oldid=1073294835&ns=0
dbo:wikiPageLength
4444
foaf:isPrimaryTopicOf
wikipedia-en:Orientation_of_a_vector_bundle
Subject Item
dbr:Glossary_of_algebraic_topology
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Glossary_of_differential_geometry_and_topology
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Chern_class
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Orientability
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Euler_class
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Sphere_bundle
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Orientable_vector_bundle
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
dbo:wikiPageRedirects
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Oriented_bundle
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
dbo:wikiPageRedirects
dbr:Orientation_of_a_vector_bundle
Subject Item
dbr:Oriented_vector_bundle
dbo:wikiPageWikiLink
dbr:Orientation_of_a_vector_bundle
dbo:wikiPageRedirects
dbr:Orientation_of_a_vector_bundle
Subject Item
wikipedia-en:Orientation_of_a_vector_bundle
foaf:primaryTopic
dbr:Orientation_of_a_vector_bundle