This HTML5 document contains 33 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
n10http://nnsp.ucinne.cz/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n20http://www.cisjournal.org/journalofcomputing/archive/vol4no1/
n4https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n19http://giesl.blogspot.in/2012/09/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Neural_network_synchronization_protocol
rdf:type
yago:Description106724763 yago:Communication100033020 yago:WikicatArtificialNeuralNetworks yago:ComputerArchitecture106725249 yago:Statement106722453 yago:NeuralNetwork106725467 yago:Specification106725067 yago:Abstraction100002137 yago:Message106598915
rdfs:label
Neural network synchronization protocol
rdfs:comment
The Neural network synchronization protocol, abbreviated as NNSP, is built on the application-level layer of the OSI upon TCP/IP. Aiming at secure communication, this protocol's design make use of a concept called neural network synchronization. Server and each connected client must create special type of neural network called Tree Parity Machine then compute outputs of their neural networks and exchange them in an iterative manner through the public channel. By learning and exchanging public outputs of their networks, client's and server's neural networks will be synchronized, meaning they will have identical synaptic weights, after some time. Once synchronization is achieved, weights of networks are used for secret key derivation. For the purposes of encryption/decryption of subsequent c
dct:subject
dbc:Artificial_neural_networks
dbo:wikiPageID
40473285
dbo:wikiPageRevisionID
959992373
dbo:wikiPageWikiLink
dbr:Transmission_Control_Protocol dbr:Internet_Protocol dbc:Artificial_neural_networks dbr:Neural_network dbr:OSI_model
dbo:wikiPageExternalLink
n10:%23! n19:neural-network-synchronization-protocol.html n20:vol4no1_1.pdf
owl:sameAs
n4:f6yt wikidata:Q16979345 freebase:m.0x0wxpc yago-res:Neural_network_synchronization_protocol
dbp:wikiPageUsesTemplate
dbt:Orphan dbt:External_links
dbo:abstract
The Neural network synchronization protocol, abbreviated as NNSP, is built on the application-level layer of the OSI upon TCP/IP. Aiming at secure communication, this protocol's design make use of a concept called neural network synchronization. Server and each connected client must create special type of neural network called Tree Parity Machine then compute outputs of their neural networks and exchange them in an iterative manner through the public channel. By learning and exchanging public outputs of their networks, client's and server's neural networks will be synchronized, meaning they will have identical synaptic weights, after some time. Once synchronization is achieved, weights of networks are used for secret key derivation. For the purposes of encryption/decryption of subsequent communication this symmetric key is used.
prov:wasDerivedFrom
wikipedia-en:Neural_network_synchronization_protocol?oldid=959992373&ns=0
dbo:wikiPageLength
1260
foaf:isPrimaryTopicOf
wikipedia-en:Neural_network_synchronization_protocol
Subject Item
wikipedia-en:Neural_network_synchronization_protocol
foaf:primaryTopic
dbr:Neural_network_synchronization_protocol