This HTML5 document contains 70 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n19http://www.chuacircuits.com/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n8http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
n15https://hal.archives-ouvertes.fr/hal-01323625/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Chen_Guanrong
rdfs:seeAlso
dbr:Multiscroll_attractor
dbo:wikiPageWikiLink
dbr:Multiscroll_attractor
dbp:knownFor
dbr:Multiscroll_attractor
dbo:knownFor
dbr:Multiscroll_attractor
Subject Item
dbr:Cellular_neural_network
dbo:wikiPageWikiLink
dbr:Multiscroll_attractor
Subject Item
dbr:Chua's_circuit
dbo:wikiPageWikiLink
dbr:Multiscroll_attractor
Subject Item
dbr:Double_scroll_attractor
dbo:wikiPageWikiLink
dbr:Multiscroll_attractor
dbo:wikiPageRedirects
dbr:Multiscroll_attractor
Subject Item
dbr:Multiscroll_attractor
rdfs:label
多卷波混沌吸引子 Multiscroll attractor
rdfs:comment
In the mathematics of dynamical systems, the double-scroll attractor (sometimes known as Chua's attractor) is a strange attractor observed from a physical electronic chaotic circuit (generally, Chua's circuit) with a single nonlinear resistor (see Chua's diode). The double-scroll system is often described by a system of three nonlinear ordinary differential equations and a 3-segment piecewise-linear equation (see Chua's equations). This makes the system easily simulated numerically and easily manifested physically due to Chua's circuits' simple design. 多卷波混沌吸引子(N scroll chaotic attractor)也称N卷波吸引子,是實際混沌電路(一般而言,是蔡氏電路)加上一個非線性電阻(例如)而產生的奇異吸引子。多卷波混沌吸引子可以用三個非線性常微分方程以及三段的片段連續線性方程來描述。這可以簡化系統的數值模擬,也因為蔡氏電路的設計簡單,也很容易實作。 多卷波混沌吸引子在保密数码通讯,同步预测等方面有重要应用。
foaf:depiction
n7:Chen_chaos_attractor_plot.png n7:Maple_plot_Chen_Attractor.jpg n7:ChuaAttractorModified.svg n7:PWLDuffingAttractor.svg n7:9_scroll_modified_Chua_attractor.png n7:9_scroll_modified_Chua_attractor_xt_plot.png n7:N_scroll_generalized_Chen_attractor_41_frames.gif n7:DoubleScrollAttractor3D.svg n7:LuChenAttractorModified3D.svg n7:PWL_Duffing_chaotic_attractor_plot.gif n7:Lu_Chen_chaotic_attractor.gif n7:PWL_Duffing_chaotic_attractor_xy_plot.gif n7:Rabinovich_Fabricant_xy_plot_0.15.png n7:Trillium_attractor.png n7:LuChenAttractor3D.svg n7:LorenzModified3D.svg
dcterms:subject
dbc:Chaos_theory
dbo:wikiPageID
34760289
dbo:wikiPageRevisionID
1122135462
dbo:wikiPageWikiLink
dbr:Runge-Kutta_method n8:ChuaAttractorModified.svg n8:LorenzModified3D.svg n8:LuChenAttractor3D.svg dbr:Rabinovich-Fabrikant_equation n8:LuChenAttractorModified3D.svg dbr:Hidden_oscillation dbr:Chen_Guanrong dbr:Chaos_theory dbr:Strange_attractor dbr:Dynamical_system dbr:Leon_Chua dbr:Eigenvector n8:PWLDuffingAttractor.svg dbr:Autonomous_circuit dbc:Chaos_theory dbr:Fractal dbr:Nonlinear_system dbr:Chua's_circuit dbr:Chua's_diode dbr:Poincaré_map n8:DoubleScrollAttractor3D.svg
dbo:wikiPageExternalLink
n15:document n19:howtobuild4.php
owl:sameAs
freebase:m.0j3cfmd n12:4iirB wikidata:Q5300085 dbpedia-zh:多卷波混沌吸引子
dbp:wikiPageUsesTemplate
dbt:Gallery dbt:Cite_journal dbt:Chaos_theory dbt:Short_description
dbo:thumbnail
n7:DoubleScrollAttractor3D.svg?width=300
dbo:abstract
多卷波混沌吸引子(N scroll chaotic attractor)也称N卷波吸引子,是實際混沌電路(一般而言,是蔡氏電路)加上一個非線性電阻(例如)而產生的奇異吸引子。多卷波混沌吸引子可以用三個非線性常微分方程以及三段的片段連續線性方程來描述。這可以簡化系統的數值模擬,也因為蔡氏電路的設計簡單,也很容易實作。 多卷波混沌吸引子在保密数码通讯,同步预测等方面有重要应用。 In the mathematics of dynamical systems, the double-scroll attractor (sometimes known as Chua's attractor) is a strange attractor observed from a physical electronic chaotic circuit (generally, Chua's circuit) with a single nonlinear resistor (see Chua's diode). The double-scroll system is often described by a system of three nonlinear ordinary differential equations and a 3-segment piecewise-linear equation (see Chua's equations). This makes the system easily simulated numerically and easily manifested physically due to Chua's circuits' simple design. Using a Chua's circuit, this shape is viewed on an oscilloscope using the X, Y, and Z output signals of the circuit. This chaotic attractor is known as the double scroll because of its shape in three-dimensional space, which is similar to two saturn-like rings connected by swirling lines. The attractor was first observed in simulations, then realized physically after Leon Chua invented the autonomous chaotic circuit which became known as Chua's circuit. The double-scroll attractor from the Chua circuit was rigorously proven to be chaotic through a number of Poincaré return maps of the attractor explicitly derived by way of compositions of the eigenvectors of the 3-dimensional state space. Numerical analysis of the double-scroll attractor has shown that its geometrical structure is made up of an infinite number of fractal-like layers. Each cross section appears to be a fractal at all scales. Recently, there has also been reported the discovery of hidden attractors within the double scroll. In 1999 Guanrong Chen (陈关荣) and Ueta proposed another double scroll chaotic attractor, called the Chen system or Chen attractor.
prov:wasDerivedFrom
wikipedia-en:Multiscroll_attractor?oldid=1122135462&ns=0
dbo:wikiPageLength
10220
foaf:isPrimaryTopicOf
wikipedia-en:Multiscroll_attractor
Subject Item
wikipedia-en:Multiscroll_attractor
foaf:primaryTopic
dbr:Multiscroll_attractor