This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Multilevel_Regression_with_Poststratification
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
dbo:wikiPageRedirects
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Opinion_polling_for_the_2019_European_Parliament_election_in_the_United_Kingdom
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Fay-Herriot_model
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:2021_Hartlepool_by-election
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Leeds_North_East_(UK_Parliament_constituency)
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Opinion_polling_for_the_2019_United_Kingdom_general_election
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Opinion_polling_for_the_next_United_Kingdom_general_election
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:YouGov
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:MRP
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
dbo:wikiPageDisambiguates
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Multilevel_regression_with_poststratification
rdfs:label
Multilevel regression with poststratification
rdfs:comment
Multilevel regression with poststratification (MRP) (sometimes called "Mister P") is a statistical technique used for correcting model estimates for known differences between a sample population (the population of the data you have), and a target population (a population you would like to estimate for). For example, Wang et al. used survey data from Xbox gamers to predict U.S. presidential election results. The Xbox gamers were 65% 18- to 29-year-olds and 93% male, while the electorate as a whole was 19% 18- to 29-year-olds and 47% male.
dcterms:subject
dbc:Regression_models dbc:Analysis_of_variance
dbo:wikiPageID
62207342
dbo:wikiPageRevisionID
1100659902
dbo:wikiPageWikiLink
dbc:Analysis_of_variance dbr:Statistics dbr:YouGov dbr:2012_US_presidential_election dbr:Xbox dbr:Fay-Herriot_model dbc:Regression_models dbr:Andrew_Gelman dbr:2017_United_Kingdom_general_election dbr:Census
owl:sameAs
n10:BwWqb wikidata:Q85786971
dbp:wikiPageUsesTemplate
dbt:Regression_bar dbt:Reflist dbt:Short_description
dbo:abstract
Multilevel regression with poststratification (MRP) (sometimes called "Mister P") is a statistical technique used for correcting model estimates for known differences between a sample population (the population of the data you have), and a target population (a population you would like to estimate for). For example, Wang et al. used survey data from Xbox gamers to predict U.S. presidential election results. The Xbox gamers were 65% 18- to 29-year-olds and 93% male, while the electorate as a whole was 19% 18- to 29-year-olds and 47% male. The poststratification refers to the process of adjusting the estimates, essentially a weighted average of estimates from all possible combinations of attributes (in this example age and sex, though there were more). Each combination is sometimes called a "cell." The multilevel regression is used to smooth noisy estimates in the cells with too little data by using overall or nearby averages. One application is estimating preferences in sub-regions (e.g., states, individual constituencies) based on individual-level survey data gathered at other levels of aggregation (e.g., national surveys).
prov:wasDerivedFrom
wikipedia-en:Multilevel_regression_with_poststratification?oldid=1100659902&ns=0
dbo:wikiPageLength
8741
foaf:isPrimaryTopicOf
wikipedia-en:Multilevel_regression_with_poststratification
Subject Item
dbr:Multi-level_regression_with_post-stratification
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
dbo:wikiPageRedirects
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Multilevel_Regression_and_Post-stratification
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
dbo:wikiPageRedirects
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Multilevel_Regression_and_Poststratification
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
dbo:wikiPageRedirects
dbr:Multilevel_regression_with_poststratification
Subject Item
dbr:Multilevel_regression_and_poststratification
dbo:wikiPageWikiLink
dbr:Multilevel_regression_with_poststratification
dbo:wikiPageRedirects
dbr:Multilevel_regression_with_poststratification
Subject Item
wikipedia-en:Multilevel_regression_with_poststratification
foaf:primaryTopic
dbr:Multilevel_regression_with_poststratification