This HTML5 document contains 75 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6http://dbpedia.org/resource/File:
n17https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Multidimensional_DSP_with_GPU_Acceleration
rdf:type
dbo:Software
rdfs:label
Multidimensional DSP with GPU Acceleration
rdfs:comment
Digital signal processing (DSP) is a ubiquitous methodology in scientific and engineering computations. In practice, DSP problems are often not only one dimensional. For instance, image data is a 2-D signal and radar is a 3-D signal. While the number of dimensions increases, the time and/or storage complexity of processing digital signals grow dramatically. Therefore, solving multidimensional DSP problems in real-time is extremely difficult.
foaf:depiction
n11:SIMD_GPGPU.jpg n11:OpenCL_execution_flow_rev.jpg
dcterms:subject
dbc:Digital_signal_processing dbc:Digital_signal_processors dbc:Parallel_computing dbc:GPGPU
dbo:wikiPageID
48422258
dbo:wikiPageRevisionID
1123375086
dbo:wikiPageWikiLink
dbr:Nyquist–Shannon_sampling_theorem dbr:Ultrasound dbr:X-ray dbr:Graphics_processing_unit n6:SIMD_GPGPU.jpg dbr:Finite_impulse_response dbr:Apple_Inc. dbr:Fourier_transform dbr:Video_processing dbr:C_(programming_language) dbr:Cray dbr:Computer_cluster dbc:Digital_signal_processing dbr:Radar_signal_characteristics dbr:Fast_Fourier_transform dbr:Image_processing dbr:OpenCL dbr:C++ dbr:General-purpose_computing_on_graphics_processing_units dbr:Ultrasound_scan dbr:Weather_forecasting dbr:Digital_signal_processing dbr:CUDA dbr:Digital_signal_processor dbr:Microsoft dbr:Application_programming_interface dbr:Fortran dbc:Parallel_computing dbr:Infinite_impulse_response dbc:Digital_signal_processors dbr:Magnetic_resonance_imaging dbr:Field-programmable_gate_array dbr:Divide_and_conquer_algorithms dbr:Cpu dbc:GPGPU dbr:OpenACC dbr:Sonar_signal_processing dbr:Supercomputer dbr:Khronos_Group dbr:C++_AMP n6:OpenCL_execution_flow_rev.jpg dbr:Synthetic_aperture_radar dbr:Single_instruction,_multiple_data dbr:Self-driving_car dbr:CT_scan dbr:Nvidia
owl:sameAs
wikidata:Q22907103 n17:2AdXG yago-res:Multidimensional_DSP_with_GPU_Acceleration
dbp:wikiPageUsesTemplate
dbt:Programming_languages dbt:Advert dbt:Parallel_computing dbt:Math dbt:Reflist dbt:CPU_technologies dbt:DSP dbt:Orphan
dbo:thumbnail
n11:SIMD_GPGPU.jpg?width=300
dbo:abstract
Digital signal processing (DSP) is a ubiquitous methodology in scientific and engineering computations. In practice, DSP problems are often not only one dimensional. For instance, image data is a 2-D signal and radar is a 3-D signal. While the number of dimensions increases, the time and/or storage complexity of processing digital signals grow dramatically. Therefore, solving multidimensional DSP problems in real-time is extremely difficult. Modern general purpose graphics processing units (GPGPUs) have an excellent throughput on vector operations and numeric manipulations through a high degree of parallel computations. Processing digital signals, particularly multidimensional signals, often involves a series of vector operations on massive numbers of independent data samples, GPGPUs are now widely employed to accelerate multidimensional DSP, such as image processing, video codecs, radar signal analysis, sonar signal processing, and ultrasound scanning. Conceptually, GPGPUs dramatically reduce the computation complexity when compared with central processing units (CPUs), digital signal processors (DSPs), or other FPGA accelerators.
gold:hypernym
dbr:Methodology
prov:wasDerivedFrom
wikipedia-en:Multidimensional_DSP_with_GPU_Acceleration?oldid=1123375086&ns=0
dbo:wikiPageLength
21469
foaf:isPrimaryTopicOf
wikipedia-en:Multidimensional_DSP_with_GPU_Acceleration
Subject Item
wikipedia-en:Multidimensional_DSP_with_GPU_Acceleration
foaf:primaryTopic
dbr:Multidimensional_DSP_with_GPU_Acceleration