This HTML5 document contains 61 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n17http://www.math.harvard.edu/~lurie/papers/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n14https://web.archive.org/web/20060605061258/http:/users.ictp.it/~pub_off/lectures/lns001/Sorger/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
n15http://www.uni-essen.de/~hm0002/
dbthttp://dbpedia.org/resource/Template:
n13https://www.uni-due.de/~hm0002/Artikel/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n16https://mathoverflow.net/q/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Behrend's_trace_formula
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Quotient_stack
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Equivariant_cohomology
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Stack_(mathematics)
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Harder–Narasimhan_stratification
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Atiyah–Bott_formula
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Torsor_(algebraic_geometry)
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Moduli_stack_of_principal_bundles
rdf:type
owl:Thing
rdfs:label
Moduli stack of principal bundles
rdfs:comment
In algebraic geometry, given a smooth projective curve X over a finite field and a smooth affine group scheme G over it, the moduli stack of principal bundles over X, denoted by , is an algebraic stack given by: for any -algebra R, the category of principal G-bundles over the relative curve . In particular, the category of -points of , that is, , is the category of G-bundles over X. In the finite field case, it is not common to define the homotopy type of . But one can still define a (smooth) cohomology and homology of .
rdfs:seeAlso
dbr:Weil_conjecture_on_Tamagawa_numbers
dcterms:subject
dbc:Algebraic_geometry
dbo:wikiPageID
41790574
dbo:wikiPageRevisionID
1077148096
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_vector_bundles dbr:Smooth_scheme dbr:Algebraic_stack dbr:Smooth_topology dbr:Projective_curve dbr:Behrend's_trace_formula dbc:Algebraic_geometry dbr:Smooth_curve dbr:Quotient_stack dbr:Gauge_group_(mathematics) dbr:Series_(mathematics) dbr:Ran_space dbr:Generic_fiber dbr:L-adic_integers dbr:Torsor dbr:Graded_vector_space dbr:Group_scheme dbr:Geometric_Langlands_conjectures dbr:Homotopy_quotient dbr:Affine_group_scheme dbr:Homology_(mathematics) dbr:Homotopy_type dbr:Cohomology dbr:Lefschetz_trace_formula dbr:Torsor_(algebraic_geometry) dbr:Geometric_Frobenius dbr:Harder–Narasimhan_stratification dbr:Smooth_stack
dbo:wikiPageExternalLink
n13:StacksCourse_v2.pdf n14:Sorger.pdf n15: n16:87171 n17:tamagawa.pdf
owl:sameAs
n12:fmkc wikidata:Q17099025 freebase:m.0_gzt2f
dbp:wikiPageUsesTemplate
dbt:Main dbt:See_also dbt:Reflist
dbo:abstract
In algebraic geometry, given a smooth projective curve X over a finite field and a smooth affine group scheme G over it, the moduli stack of principal bundles over X, denoted by , is an algebraic stack given by: for any -algebra R, the category of principal G-bundles over the relative curve . In particular, the category of -points of , that is, , is the category of G-bundles over X. Similarly, can also be defined when the curve X is over the field of complex numbers. Roughly, in the complex case, one can define as the quotient stack of the space of holomorphic connections on X by the gauge group. Replacing the quotient stack (which is not a topological space) by a homotopy quotient (which is a topological space) gives the homotopy type of . In the finite field case, it is not common to define the homotopy type of . But one can still define a (smooth) cohomology and homology of .
prov:wasDerivedFrom
wikipedia-en:Moduli_stack_of_principal_bundles?oldid=1077148096&ns=0
dbo:wikiPageLength
6348
foaf:isPrimaryTopicOf
wikipedia-en:Moduli_stack_of_principal_bundles
Subject Item
dbr:Moduli_stack_of_vector_bundles
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
Subject Item
dbr:Moduli_stack_of_bundles
dbo:wikiPageWikiLink
dbr:Moduli_stack_of_principal_bundles
dbo:wikiPageRedirects
dbr:Moduli_stack_of_principal_bundles
Subject Item
wikipedia-en:Moduli_stack_of_principal_bundles
foaf:primaryTopic
dbr:Moduli_stack_of_principal_bundles